IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v283y2021ics0306261920316913.html
   My bibliography  Save this article

Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls

Author

Listed:
  • Kishore, Ravi Anant
  • Bianchi, Marcus V.A.
  • Booten, Chuck
  • Vidal, Judith
  • Jackson, Roderick

Abstract

Deploying phase change materials (PCMs) in building envelopes can be effective in reducing space heating/cooling loads and providing load shedding and shifting capacity. However, the full potential of PCM-integrated envelopes can only be harnessed if the PCM undergoes phase change using free ambient heating/cooling, and the stored energy is effectively transferred between the exterior and the interior environments. Traditional thermal insulation (with a fixed thermal resistance) limits PCM utilization, which restrains the energy saving potential of a PCM-integrated envelope to a small percentage. Proposed dynamic insulation material and system (DIMS) provides the option of varying its thermal resistance based on the indoor and outdoor conditions. Although it has been established that employing PCM as well as DIMS in building envelopes separately improves buildings’ energy performance, no prior studies that analyzed the combined influence of both technologies were identified. In this study, we examine a novel wall design, comprising a layer of PCM between two layers of DIMS. We note that the PCM-DIMS-integrated wall provides significantly higher energy saving potential than the DIMS-only integrated wall or the PCM-only integrated wall in all the climates and wall orientations analyzed in this study. Depending on the climate, the PCM-DIMS-integrated wall could provide 15–72% reduction in annual heat gain and 7–38% reduction in annual heat loss. The analysis presented in this study supports the need to develop scalable dynamic insulations combined with thermal energy storage systems for buildings.

Suggested Citation

  • Kishore, Ravi Anant & Bianchi, Marcus V.A. & Booten, Chuck & Vidal, Judith & Jackson, Roderick, 2021. "Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls," Applied Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316913
    DOI: 10.1016/j.apenergy.2020.116306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920316913
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Xing & Medina, Mario A. & Zhang, Xiaosong, 2013. "On the importance of the location of PCMs in building walls for enhanced thermal performance," Applied Energy, Elsevier, vol. 106(C), pages 72-78.
    2. Biswas, Kaushik & Lu, Jue & Soroushian, Parviz & Shrestha, Som, 2014. "Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard," Applied Energy, Elsevier, vol. 131(C), pages 517-529.
    3. Lee, Kyoung Ok & Medina, Mario A. & Raith, Erik & Sun, Xiaoqin, 2015. "Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management," Applied Energy, Elsevier, vol. 137(C), pages 699-706.
    4. Taylor, BJ & Imbabi, MS, 1998. "The application of dynamic insulation in buildings," Renewable Energy, Elsevier, vol. 15(1), pages 377-382.
    5. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    6. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM energy storage in combination with night ventilation for space cooling," Applied Energy, Elsevier, vol. 158(C), pages 412-421.
    7. AL-Saadi, Saleh Nasser & Zhai, Zhiqiang (John), 2013. "Modeling phase change materials embedded in building enclosure: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 659-673.
    8. Kimber, Mark & Clark, William W. & Schaefer, Laura, 2014. "Conceptual analysis and design of a partitioned multifunctional smart insulation," Applied Energy, Elsevier, vol. 114(C), pages 310-319.
    9. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    10. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    11. Imbabi, Mohammed Salah-Eldin, 2006. "Modular breathing panels for energy efficient, healthy building construction," Renewable Energy, Elsevier, vol. 31(5), pages 729-738.
    12. Grace G. D. Han & Huashan Li & Jeffrey C. Grossman, 2017. "Optically-controlled long-term storage and release of thermal energy in phase-change materials," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhen & Wang, Yanlin & Yang, Laishun & Cui, Yi & Song, Lei & Yue, Guangxi, 2024. "Multi-objective optimization of heat charging performance of phase change materials in tree-shaped perforated fin heat exchangers," Energy, Elsevier, vol. 294(C).
    2. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    3. Mao, Yufeng & Zhong, Mingliang & Wang, Ji X., 2023. "Dimensionless study of phase-change-based thermal protection for pulsed electromagnetic machines: Towards heat absorption-dissipation matching," Applied Energy, Elsevier, vol. 352(C).
    4. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    5. Kunwar, Niraj & Salonvaara, Mikael & Iffa, Emishaw & Shrestha, Som & Hun, Diana, 2023. "Performance assessment of active insulation systems in residential buildings for energy savings and peak demand reduction," Applied Energy, Elsevier, vol. 348(C).
    6. Zhao, Hengxin & Wu, Yifan & Sun, Hongli & Lin, Borong & Zhong, Minlin & Jiang, Guochen & Wu, Shuangdui, 2023. "A novel building envelope combined with jumping-droplet thermal diode: From theory to practice," Renewable Energy, Elsevier, vol. 218(C).
    7. Palmer, Ben & Arshad, Adeel & Yang, Yan & Wen, Chuang, 2023. "Energy storage performance improvement of phase change materials-based triplex-tube heat exchanger (TTHX) using liquid–solid interface-informed fin configurations," Applied Energy, Elsevier, vol. 333(C).
    8. Wei, Zhichen & Calautit, John Kaiser, 2024. "Field experiment testing of a low-cost model predictive controller (MPC) for building heating systems and analysis of phase change material (PCM) integration," Applied Energy, Elsevier, vol. 360(C).
    9. Nandy, Aditi & Houl, Yassine & Zhao, Weihuan & D'Souza, Nandika Anne, 2023. "Thermal heat transfer and energy modeling through incorporation of phase change materials (PCMs) into polyurethane foam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    10. Cui, Shuang & Kishore, Ravi Anant & Kolari, Pranvera & Zheng, Qiye & Kaur, Sumanjeet & Vidal, Judith & Jackson, Roderick, 2023. "Model-driven development of durable and scalable thermal energy storage materials for buildings," Energy, Elsevier, vol. 265(C).
    11. Zhou, Yuekuan & Zheng, Siqian, 2024. "A co-simulated material-component-system-district framework for climate-adaption and sustainability transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Zhou, Shiqiang & Razaqpur, A. Ghani, 2024. "CFD modeling and experimental validation of the thermal performance of a novel dynamic PCM Trombe wall: Comparison with the companion static wall with and without PCM," Applied Energy, Elsevier, vol. 353(PA).
    13. Barbara Król, 2024. "Analysis of the Use of Energy Storage in the Form of Concrete Slabs as a Method for Sustainable Energy Management in a System with Active Thermal Insulation and Solar Collectors," Sustainability, MDPI, vol. 16(17), pages 1-16, September.
    14. Bre, Facundo & Lamberts, Roberto & Flores-Larsen, Silvana & Koenders, Eduardus A.B., 2023. "Multi-objective optimization of latent energy storage in buildings by using phase change materials with different melting temperatures," Applied Energy, Elsevier, vol. 336(C).
    15. Huang, He & Wang, Honglei & Hu, Yu-Jie & Li, Chengjiang & Wang, Xiaolin, 2022. "Optimal plan for energy conservation and CO2 emissions reduction of public buildings considering users' behavior: Case of China," Energy, Elsevier, vol. 261(PA).
    16. Zhang, Yuan & Sun, Xiaoqin & Medina, Mario A., 2024. "Experimental assessment of concrete masonry units integrated with insulation and phase change material: A wall-pattern study," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    2. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    3. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Shafie-khah, M. & Kheradmand, M. & Javadi, S. & Azenha, M. & de Aguiar, J.L.B. & Castro-Gomes, J. & Siano, P. & Catalão, J.P.S., 2016. "Optimal behavior of responsive residential demand considering hybrid phase change materials," Applied Energy, Elsevier, vol. 163(C), pages 81-92.
    5. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.
    6. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    7. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    8. Wijesuriya, Sajith & Brandt, Matthew & Tabares-Velasco, Paulo Cesar, 2018. "Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate," Applied Energy, Elsevier, vol. 222(C), pages 497-514.
    9. Hlanze, Philani & Jiang, Zhimin & Cai, Jie & Shen, Bo, 2023. "Model-based predictive control of multi-stage air-source heat pumps integrated with phase change material-embedded ceilings," Applied Energy, Elsevier, vol. 336(C).
    10. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M, 2016. "Application of weather forecast in conjunction with price-based method for PCM solar passive buildings – An experimental study," Applied Energy, Elsevier, vol. 163(C), pages 9-18.
    12. Liu, Jiang & Liu, Yan & Yang, Liu & Liu, Tang & Zhang, Chen & Dong, Hong, 2020. "Climatic and seasonal suitability of phase change materials coupled with night ventilation for office buildings in Western China," Renewable Energy, Elsevier, vol. 147(P1), pages 356-373.
    13. Ye, Rongda & Lin, Wenzhu & Yuan, Kunjie & Fang, Xiaoming & Zhang, Zhengguo, 2017. "Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 193(C), pages 325-335.
    14. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    15. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
    16. Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
    17. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Kheradmand, Mohammad & Azenha, Miguel & de Aguiar, José L.B. & Castro-Gomes, João, 2016. "Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings," Energy, Elsevier, vol. 94(C), pages 250-261.
    19. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2016. "Behaviour of a SPD switchable glazing in an outdoor test cell with heat removal under varying weather conditions," Applied Energy, Elsevier, vol. 180(C), pages 695-706.
    20. Jaworski, Maciej & Łapka, Piotr & Furmański, Piotr, 2014. "Numerical modelling and experimental studies of thermal behaviour of building integrated thermal energy storage unit in a form of a ceiling panel," Applied Energy, Elsevier, vol. 113(C), pages 548-557.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.