IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923005731.html
   My bibliography  Save this article

Performance assessment of active insulation systems in residential buildings for energy savings and peak demand reduction

Author

Listed:
  • Kunwar, Niraj
  • Salonvaara, Mikael
  • Iffa, Emishaw
  • Shrestha, Som
  • Hun, Diana

Abstract

Active insulation systems (AISs) in buildings are envelopes that integrate thermal insulation, thermal energy storage, and controls. Although different designs for AISs have been proposed in the literature, a comprehensive analysis of feasible AISs is lacking. This paper discusses the energy performance, peak demand reduction potential, and performance characteristics of an AIS that uses a concrete wall as thermal mass sandwiched between two solid-state thermal switches (STSs). These STSs change their thermal conductivity using an on/off metal switch to create or break a thermal bridge across the STS. This paper first describes the experimental setup, used to determine the ratio of thermal resistance during R-high (low thermal conductivity) and R-low (high thermal conductivity) states of the STSs. This ratio was then used in whole-building energy simulations to evaluate the performance of AIS walls across different climate zones with/without a freeze timer of 60 min. The timer was added to reduce the number of switches of STSs from one state to another, and hence the energy needed for these switches. Analysis of the switching frequency and interval of STSs, thermal conductivity of walls, impact of wall orientation, and heat transfer through the wall from the use of AIS at different climate zones/locations were performed. The simulation results show that the AIS can achieve energy savings ranging from ∼ 980 to 2,290 kWh in a single-family home with a floor area of ∼ 220 m2 compared with an IECC 2018 baseline. The energy savings was higher in dry climate zones which represent 17% of residential buildings in the United States, compared to humid or marine climate.

Suggested Citation

  • Kunwar, Niraj & Salonvaara, Mikael & Iffa, Emishaw & Shrestha, Som & Hun, Diana, 2023. "Performance assessment of active insulation systems in residential buildings for energy savings and peak demand reduction," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923005731
    DOI: 10.1016/j.apenergy.2023.121209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923005731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    2. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Cost-benefit analysis of retrofitting attic-integrated switchable insulation systems of existing US residential buildings," Energy, Elsevier, vol. 221(C).
    3. Xu, Xinhua & Yu, Jinghua & Wang, Shengwei & Wang, Jinbo, 2014. "Research and application of active hollow core slabs in building systems for utilizing low energy sources," Applied Energy, Elsevier, vol. 116(C), pages 424-435.
    4. Kunwar, Niraj & Cetin, Kristen S. & Passe, Ulrike & Zhou, Xiaohui & Li, Yunhua, 2020. "Energy savings and daylighting evaluation of dynamic venetian blinds and lighting through full-scale experimental testing," Energy, Elsevier, vol. 197(C).
    5. Kishore, Ravi Anant & Bianchi, Marcus V.A. & Booten, Chuck & Vidal, Judith & Jackson, Roderick, 2021. "Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls," Applied Energy, Elsevier, vol. 283(C).
    6. Bruno, Roberto & Bevilacqua, Piero, 2022. "Heat and mass transfer for the U-value assessment of opaque walls in the Mediterranean climate: Energy implications," Energy, Elsevier, vol. 261(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    2. Dehwah, Ammar H.A. & Krarti, Moncef, 2022. "Optimal controls of precooling strategies using switchable insulation systems for commercial buildings," Applied Energy, Elsevier, vol. 320(C).
    3. Zhou, Yuekuan & Zheng, Siqian, 2024. "A co-simulated material-component-system-district framework for climate-adaption and sustainability transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Wu, Wentao & Zhang, Wei & Benner, Jingru & Malkawi, Ali, 2020. "Critical evaluation of analytical methods for thermally activated building systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    5. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Performance of precooling strategies using switchable insulation systems for commercial buildings," Applied Energy, Elsevier, vol. 303(C).
    6. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    7. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    8. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    9. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    10. Romaní, Joaquim & Cabeza, Luisa F. & de Gracia, Alvaro, 2018. "Development and experimental validation of a transient 2D numeric model for radiant walls," Renewable Energy, Elsevier, vol. 115(C), pages 859-870.
    11. Zhang, Yuan & Sun, Xiaoqin & Medina, Mario A., 2024. "Experimental assessment of concrete masonry units integrated with insulation and phase change material: A wall-pattern study," Energy, Elsevier, vol. 289(C).
    12. Vanaga, Ruta & Narbuts, Jānis & Zundāns, Zigmārs & Blumberga, Andra, 2023. "On-site testing of dynamic facade system with the solar energy storage," Energy, Elsevier, vol. 283(C).
    13. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    14. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    15. Huang, Xinyu & Li, Fangfei & Liu, Zhengguang & Gao, Xinyu & Yang, Xiaohu & Yan, Jinyue, 2023. "Design and optimization of a novel phase change photovoltaic thermal utilization structure for building envelope," Renewable Energy, Elsevier, vol. 218(C).
    16. Bre, Facundo & Lamberts, Roberto & Flores-Larsen, Silvana & Koenders, Eduardus A.B., 2023. "Multi-objective optimization of latent energy storage in buildings by using phase change materials with different melting temperatures," Applied Energy, Elsevier, vol. 336(C).
    17. Schmelas, Martin & Feldmann, Thomas & Bollin, Elmar, 2017. "Savings through the use of adaptive predictive control of thermo-active building systems (TABS): A case study," Applied Energy, Elsevier, vol. 199(C), pages 294-309.
    18. Guo, Jiwei & Dong, Jiankai & Wang, Hongjue & Wang, Yuan & Zou, Bin & Jiang, Yiqiang, 2022. "Study on the demand response potential of an actively ventilated building: Parametric and scenario analysis," Energy, Elsevier, vol. 238(PC).
    19. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Review analysis of COVID-19 impact on electricity demand for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Wei, Zhichen & Calautit, John Kaiser, 2024. "Field experiment testing of a low-cost model predictive controller (MPC) for building heating systems and analysis of phase change material (PCM) integration," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923005731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.