IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3673-d817661.html
   My bibliography  Save this article

Triad Analysis of Global Energy Trade Networks and Implications for Energy Trade Stability

Author

Listed:
  • Shade T. Shutters

    (School of Complex Adaptive Systems, Arizona State University, P.O. Box 872701, Tempe, AZ 85287, USA
    Global Climate Forum, Neue Promenade 6, 10178 Berlin, Germany)

  • Keith Waters

    (School of Complex Adaptive Systems, Arizona State University, 1800 I St. NW, Washington, DC 20006, USA)

  • Rachata Muneepeerakul

    (Department of Agricultural and Biological Engineering, University of Florida, P.O. Box 110570, Gainesville, FL 32611, USA)

Abstract

An international push to decarbonize economies has initiated a major transition in the global energy system and has begun to disrupt the intricate network of energy trade. As trade patterns begin to reconfigure, it is important that policy makers understand how vulnerabilities of the existing network may present obstacles to a smooth energy transition. We analyze the topology of the global energy trade network in aggregate, for various energy commodities, and for individual countries. Using the network science technique of triad analysis, which examines the prevalence of 3-node subnetworks in a target network, we calculate triad significance profiles for each network. We then analyze whether various triads are under- or over-represented in our networks and find that triads associated with stability appear more frequently than expected, whereas triads associated with conflict appear less frequently than expected. We further find that the global energy trade network is quite robust against disruptions, maintaining its topological characteristics even after random removal of 80% of the network’s nodes. However, when analyzing individual countries, we find that some exhibit a high prevalence of unstable triads or a low prevalence of stabilizing triads, suggesting that vulnerabilities in global energy trade are more pronounced in some countries than others.

Suggested Citation

  • Shade T. Shutters & Keith Waters & Rachata Muneepeerakul, 2022. "Triad Analysis of Global Energy Trade Networks and Implications for Energy Trade Stability," Energies, MDPI, vol. 15(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3673-:d:817661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. Garlaschelli & T. Di Matteo & T. Aste & G. Caldarelli & M. I. Loffredo, 2007. "Interplay between topology and dynamics in the World Trade Web," Papers physics/0701030, arXiv.org.
    2. Sofia Berdysheva & Svetlana Ikonnikova, 2021. "The Energy Transition and Shifts in Fossil Fuel Use: The Study of International Energy Trade and Energy Security Dynamics," Energies, MDPI, vol. 14(17), pages 1-26, August.
    3. Luca De Benedictis & Lucia Tajoli, 2011. "The World Trade Network," The World Economy, Wiley Blackwell, vol. 34(8), pages 1417-1454, August.
    4. Zhong, Weiqiong & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2014. "The evolution of communities in the international oil trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 42-52.
    5. D. Garlaschelli & T. Di Matteo & T. Aste & G. Caldarelli & M. I. Loffredo, 2007. "Interplay between topology and dynamics in the World Trade Web," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(2), pages 159-164, May.
    6. Wang, Wenya & Li, Zhenfu & Cheng, Xin, 2019. "Evolution of the global coal trade network: A complex network analysis," Resources Policy, Elsevier, vol. 62(C), pages 496-506.
    7. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "The roles of countries in the international fossil fuel trade: An emergy and network analysis," Energy Policy, Elsevier, vol. 100(C), pages 365-376.
    8. Carlo Piccardi & Lucia Tajoli, 2018. "Complexity, centralization, and fragility in economic networks," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-13, November.
    9. Sartori, Martina & Schiavo, Stefano, 2015. "Connected we stand: A network perspective on trade and global food security," Food Policy, Elsevier, vol. 57(C), pages 114-127.
    10. Luca De Benedictis & Lucia Tajoli, 2010. "Comparing sectoral international trade networks," Aussenwirtschaft, University of St. Gallen, School of Economics and Political Science, Swiss Institute for International Economics and Applied Economics Research, vol. 65(2), pages 167-189, June.
    11. Li, Xiang & Ying Jin, Yu & Chen, Guanrong, 2003. "Complexity and synchronization of the World trade Web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 328(1), pages 287-296.
    12. Gao, Cuixia & Sun, Mei & Shen, Bo, 2015. "Features and evolution of international fossil energy trade relationships: A weighted multilayer network analysis," Applied Energy, Elsevier, vol. 156(C), pages 542-554.
    13. Hou, Wenyu & Liu, Huifang & Wang, Hui & Wu, Fengyang, 2018. "Structure and patterns of the international rare earths trade: A complex network analysis," Resources Policy, Elsevier, vol. 55(C), pages 133-142.
    14. Tiziano Distefano & Francesco Laio & Luca Ridolfi & Stefano Schiavo, 2018. "Shock transmission in the International Food Trade Network," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-15, August.
    15. Shade T Shutters & Rachata Muneepeerakul, 2012. "Agricultural Trade Networks and Patterns of Economic Development," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    16. Chen, B. & Li, J.S. & Wu, X.F. & Han, M.Y. & Zeng, L. & Li, Z. & Chen, G.Q., 2018. "Global energy flows embodied in international trade: A combination of environmentally extended input–output analysis and complex network analysis," Applied Energy, Elsevier, vol. 210(C), pages 98-107.
    17. Yang, Yu & Poon, Jessie P.H. & Liu, Yi & Bagchi-Sen, Sharmistha, 2015. "Small and flat worlds: A complex network analysis of international trade in crude oil," Energy, Elsevier, vol. 93(P1), pages 534-543.
    18. Gregory Whitten & Xiaoyi Dai & Simon Fan & Yu Pang, 2020. "Do political relations affect international trade? Evidence from China’s twelve trading partners," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-24, December.
    19. Lu, Weiwei & Su, Meirong & Zhang, Yan & Yang, Zhifeng & Chen, Bin & Liu, Gengyuan, 2014. "Assessment of energy security in China based on ecological network analysis: A perspective from the security of crude oil supply," Energy Policy, Elsevier, vol. 74(C), pages 406-413.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Jie Xie & Na Wei & Wei-Xing Zhou, 2020. "Evolving efficiency and robustness of global oil trade networks," Papers 2004.05325, arXiv.org.
    2. Xi, Xian & Zhou, Jinsheng & Gao, Xiangyun & Liu, Donghui & Zheng, Huiling & Sun, Qingru, 2019. "Impact of changes in crude oil trade network patterns on national economy," Energy Economics, Elsevier, vol. 84(C).
    3. Wang, Wenya & Fan, L.W. & Zhou, P., 2022. "Evolution of global fossil fuel trade dependencies," Energy, Elsevier, vol. 238(PC).
    4. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2020. "Community structure in the World Trade Network based on communicability distances," Papers 2001.06356, arXiv.org, revised Jul 2020.
    5. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2022. "Community structure in the World Trade Network based on communicability distances," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(2), pages 405-441, April.
    6. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    7. Cai, Xiaomei & Liu, Chan & Zheng, Shuxian & Hu, Han & Tan, Zhanglu, 2023. "Analysis on the evolution characteristics of barite international trade pattern based on complex networks," Resources Policy, Elsevier, vol. 83(C).
    8. Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2013. "Null models of economic networks: the case of the world trade web," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 75-107, April.
    9. Chen, B. & Li, J.S. & Wu, X.F. & Han, M.Y. & Zeng, L. & Li, Z. & Chen, G.Q., 2018. "Global energy flows embodied in international trade: A combination of environmentally extended input–output analysis and complex network analysis," Applied Energy, Elsevier, vol. 210(C), pages 98-107.
    10. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Dai, Tao & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "Global pattern of the international fossil fuel trade: The evolution of communities," Energy, Elsevier, vol. 123(C), pages 260-270.
    11. Marco Dueñas & Giorgio Fagiolo, 2014. "Global Trade Imbalances: A Network Approach," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 17(03n04), pages 1-29.
    12. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    13. Xinxin Xu & Sheng Ma & Ziqiang Zeng, 2019. "Complex network analysis of bilateral international investment under de-globalization: Structural properties and evolution," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.
    14. Zhang, Hongwei & Wang, Ying & Zhu, Xuehong & Guo, Yaoqi, 2020. "The impact of energy trade patterns on CO2 emissions: An emergy and network analysis," Energy Economics, Elsevier, vol. 92(C).
    15. Guan, Qing & An, Haizhong, 2017. "The exploration on the trade preferences of cooperation partners in four energy commodities’ international trade: Crude oil, coal, natural gas and photovoltaic," Applied Energy, Elsevier, vol. 203(C), pages 154-163.
    16. Wu, Gang & Pu, Yue & Shu, Tianran, 2021. "Features and evolution of global energy trade network based on domestic value-added decomposition of export," Energy, Elsevier, vol. 228(C).
    17. Jun U. Shepard & Bas J. van Ruijven & Behnam Zakeri, 2022. "Impacts of Trade Friction and Climate Policy on Global Energy Trade Network," Energies, MDPI, vol. 15(17), pages 1-21, August.
    18. Rosanna Pittiglio & Filippo Reganati & Luca Toschi, 2017. "How to detect illegal waste shipments? The case of the international trade in polyethylene waste," Economics Bulletin, AccessEcon, vol. 37(4), pages 2625-2640.
    19. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    20. Zhang, Hongwei & Wang, Ying & Yang, Cai & Guo, Yaoqi, 2021. "The impact of country risk on energy trade patterns based on complex network and panel regression analyses," Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3673-:d:817661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.