IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v328y2003i1p287-296.html
   My bibliography  Save this article

Complexity and synchronization of the World trade Web

Author

Listed:
  • Li, Xiang
  • Ying Jin, Yu
  • Chen, Guanrong

Abstract

The complex topology of a network determines its dynamics. The world economy is now internationally connected through a globalization process of trading. The complex dynamical behaviors of the world economy have been studied as a dynamical system, but there does not seem to be any consideration of the effect of dynamics on the world trade network. In this paper, we attempt such a study and present the scale-free features of the degree distribution, as well as wealth and resource distributions on the World Trade Web (WTW). Moreover, the synchronization phenomenon of economic cycles on the WTW due to its scale-free features is discussed in detail.

Suggested Citation

  • Li, Xiang & Ying Jin, Yu & Chen, Guanrong, 2003. "Complexity and synchronization of the World trade Web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 328(1), pages 287-296.
  • Handle: RePEc:eee:phsmap:v:328:y:2003:i:1:p:287-296 DOI: 10.1016/S0378-4371(03)00567-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103005673
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiang & Chen, Guanrong, 2003. "A local-world evolving network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 328(1), pages 274-286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Schiavo & Javier Reyes & Giorgio Fagiolo, 2010. "International trade and financial integration: a weighted network analysis," Quantitative Finance, Taylor & Francis Journals, pages 389-399.
    2. Fagiolo, Giorgio & Reyes, Javier & Schiavo, Stefano, 2008. "On the topological properties of the world trade web: A weighted network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3868-3873.
    3. Qing Guan & Haizhong An & Xiaoqing Hao & Xiaoliang Jia, 2016. "The Impact of Countries’ Roles on the International Photovoltaic Trade Pattern: The Complex Networks Analysis," Sustainability, MDPI, Open Access Journal, vol. 8(4), pages 1-16, March.
    4. Giorgio Fagiolo, 2010. "The international-trade network: gravity equations and topological properties," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 5(1), pages 1-25, June.
    5. Agne Beleisyte & Renaldas Gudauskas & Valentinas Snitka, 2014. "Modeling of the Socio-Economic Sustainability and Dynamics of European Regions on the Bases of Systems Complexity," International Journal of Asian Social Science, Asian Economic and Social Society, vol. 4(11), pages 1116-1125, November.
    6. Fan, Ying & Ren, Suting & Cai, Hongbo & Cui, Xuefeng, 2014. "The state's role and position in international trade: A complex network perspective," Economic Modelling, Elsevier, vol. 39(C), pages 71-81.
    7. repec:gam:jsusta:v:8:y:2016:i:4:p:313:d:66767 is not listed on IDEAS
    8. Marcos Duenas & Rossana Mastrandrea & Matteo Barigozzi & Giorgio Fagiolo, 2017. "Spatio-Temporal Patterns of the International Merger and Acquisition Network," LEM Papers Series 2017/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    9. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, pages 1515-1522.
    10. Zhong, Weiqiong & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2014. "The evolution of communities in the international oil trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 42-52.
    11. Xu, Helian & Cheng, Long, 2016. "The QAP weighted network analysis method and its application in international services trade," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 91-101.
    12. Giorgio Fagiolo & Javier Reyes & Stefano Schiavo, 2007. "The Evolution of the World Trade Web," LEM Papers Series 2007/17, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. Hübler, Michael, 2016. "A new trade network theory: What economists can learn from engineers," Economic Modelling, Elsevier, vol. 55(C), pages 115-126.
    14. Song, Dong-Ming & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2009. "Statistical properties of world investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2450-2460.
    15. Barigozzi, Matteo & Fagiolo, Giorgio & Mangioni, Giuseppe, 2011. "Identifying the community structure of the international-trade multi-network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2051-2066.
    16. Kii, Masanobu & Akimoto, Keigo & Doi, Kenji, 2012. "Random-growth urban model with geographical fitness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5960-5970.
    17. Pau Erola & Albert Diaz-Guilera & Sergio Gomez & Alex Arenas, 2012. "Modeling international crisis synchronization in the World Trade Web," Papers 1201.2024, arXiv.org.
    18. Wen, Guanghui & Duan, Zhisheng & Chen, Guanrong & Geng, Xianmin, 2011. "A weighted local-world evolving network model with aging nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 4012-4026.
    19. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:328:y:2003:i:1:p:287-296. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.