IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6218-d646125.html
   My bibliography  Save this article

The Transition to Clean Energy: Are People Living in Island Communities Ready for Smart Grids and Demand Response?

Author

Listed:
  • Dana Abi Ghanem

    (Centre for Sustainable Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK)

  • Tracey Crosbie

    (Centre for Sustainable Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK)

Abstract

Islands are widely recognised as ideal pilot sites that can spearhead the transition to clean energy and development towards a sustainable and healthy society. One of the assumptions underpinning this notion is that island communities are more ready to engage with smart grids (SGs) than people on the mainland. This is believed to be due to the high costs of energy on islands and the idea that the sense of community and collective action is stronger on islands than on the mainland. This paper presents findings from a survey conducted to assess people’s perception of, and readiness to engage with, SG and demand response (DR) in the communities of three islands taking part in a H2020 project called REACT. The main objective of the survey, conducted in 2020, was to inform the recruitment of participants in the project, which is piloting different technologies required for SGs and DR with communities on the three islands. The results show that many island residents are motivated to take part in SG, to engage with energy saving, and are willing to change some energy-related behaviours in their homes. However, the results also indicate that levels of ownership of, and knowledge and familiarity with, the SG and DR related technologies are extremely low, suggesting that the expected uptake of DR in islands might not be as high as anticipated. This brings into question the readiness of island dwellers for the SG, their role in the deployment of such schemes more widely and the validity of the assumptions often made about island communities. This has significant implications for the design of SGs and DR solutions for islands, including devoting sufficient efforts to build knowledge and awareness of the SG, investing in demonstration projects for that purpose and tailoring interventions based on island communities’ motivations.

Suggested Citation

  • Dana Abi Ghanem & Tracey Crosbie, 2021. "The Transition to Clean Energy: Are People Living in Island Communities Ready for Smart Grids and Demand Response?," Energies, MDPI, vol. 14(19), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6218-:d:646125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burchell, Kevin & Rettie, Ruth & Roberts, Tom C., 2016. "Householder engagement with energy consumption feedback: the role of community action and communications," Energy Policy, Elsevier, vol. 88(C), pages 178-186.
    2. Tracey Crosbie & Michael Short & Muneeb Dawood & Richard Charlesworth, 2017. "Demand response in blocks of buildings: opportunities and requirements," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 4(3), pages 271-281, March.
    3. Notton, Gilles, 2015. "Importance of islands in renewable energy production and storage: The situation of the French islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 260-269.
    4. Brent, Daniel A. & Friesen, Lana & Gangadharan, Lata & Leibbrandt, Andreas, 2017. "Behavioral Insights from Field Experiments in Environmental Economics," International Review of Environmental and Resource Economics, now publishers, vol. 10(2), pages 95-143, May.
    5. Wall, Rob & Crosbie, Tracey, 2009. "Potential for reducing electricity demand for lighting in households: An exploratory socio-technical study," Energy Policy, Elsevier, vol. 37(3), pages 1021-1031, March.
    6. Sigrist, L. & Lobato, E. & Rouco, L. & Gazzino, M. & Cantu, M., 2017. "Economic assessment of smart grid initiatives for island power systems," Applied Energy, Elsevier, vol. 189(C), pages 403-415.
    7. Parag, Yael, 2021. "Which factors influence large households’ decision to join a time-of-use program? The interplay between demand flexibility, personal benefits and national benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Peter Morris & Desley Vine & Laurie Buys, 2018. "Critical Success Factors for Peak Electricity Demand Reduction: Insights from a Successful Intervention in a Small Island Community," Journal of Consumer Policy, Springer, vol. 41(1), pages 33-54, March.
    9. Li, Rongling & Dane, Gamze & Finck, Christian & Zeiler, Wim, 2017. "Are building users prepared for energy flexible buildings?—A large-scale survey in the Netherlands," Applied Energy, Elsevier, vol. 203(C), pages 623-634.
    10. Christensen, Toke Haunstrup & Friis, Freja & Bettin, Steffen & Throndsen, William & Ornetzeder, Michael & Skjølsvold, Tomas Moe & Ryghaug, Marianne, 2020. "The role of competences, engagement, and devices in configuring the impact of prices in energy demand response: Findings from three smart energy pilots with households," Energy Policy, Elsevier, vol. 137(C).
    11. Gyberg, Per & Palm, Jenny, 2009. "Influencing households' energy behaviour--how is this done and on what premises?," Energy Policy, Elsevier, vol. 37(7), pages 2807-2813, July.
    12. Muench, Stefan & Thuss, Sebastian & Guenther, Edeltraud, 2014. "What hampers energy system transformations? The case of smart grids," Energy Policy, Elsevier, vol. 73(C), pages 80-92.
    13. Hall, Nina L. & Jeanneret, Talia D. & Rai, Alan, 2016. "Cost-reflective electricity pricing: Consumer preferences and perceptions," Energy Policy, Elsevier, vol. 95(C), pages 62-72.
    14. Francesco Mancini & Gianluigi Lo Basso & Livio de Santoli, 2019. "Energy Use in Residential Buildings: Impact of Building Automation Control Systems on Energy Performance and Flexibility," Energies, MDPI, vol. 12(15), pages 1-21, July.
    15. Erdinc, Ozan & Paterakis, Nikolaos G. & Catalão, João P.S., 2015. "Overview of insular power systems under increasing penetration of renewable energy sources: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 333-346.
    16. Bradley, Peter & Leach, Matthew & Torriti, Jacopo, 2013. "A review of the costs and benefits of demand response for electricity in the UK," Energy Policy, Elsevier, vol. 52(C), pages 312-327.
    17. Duic, Neven & da Graça Carvalho, Maria, 2004. "Increasing renewable energy sources in island energy supply: case study Porto Santo," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 383-399, August.
    18. Sylvia Breukers & Tracey Crosbie & Luc van Summeren, 2020. "Mind the gap when implementing technologies intended to reduce or shift energy consumption in blocks-of-buildings," Energy & Environment, , vol. 31(4), pages 613-633, June.
    19. Parrish, Bryony & Heptonstall, Phil & Gross, Rob & Sovacool, Benjamin K., 2020. "A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response," Energy Policy, Elsevier, vol. 138(C).
    20. Verbong, Geert P.J. & Beemsterboer, Sjouke & Sengers, Frans, 2013. "Smart grids or smart users? Involving users in developing a low carbon electricity economy," Energy Policy, Elsevier, vol. 52(C), pages 117-125.
    21. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "Social barriers to the adoption of smart homes," Energy Policy, Elsevier, vol. 63(C), pages 363-374.
    22. Dillman, Don A. & Rosa, Eugene A. & Dillman, Joye J., 1983. "Lifestyle and home energy conservation in the United States: the poor accept lifestyle cutbacks while the wealthy invest in conservation," Journal of Economic Psychology, Elsevier, vol. 3(3-4), pages 299-315, September.
    23. Stephanides, Phedeas & Chalvatzis, Konstantinos J. & Li, Xin & Lettice, Fiona & Guan, Dabo & Ioannidis, Alexis & Zafirakis, Dimitris & Papapostolou, Christiana, 2019. "The social perspective on island energy transitions: Evidence from the Aegean archipelago," Applied Energy, Elsevier, vol. 255(C).
    24. P. Mackelworth & H. Carić, 2010. "Gatekeepers of island communities: exploring the pillars of sustainable development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 12(4), pages 463-480, August.
    25. Kuang, Yonghong & Zhang, Yongjun & Zhou, Bin & Li, Canbing & Cao, Yijia & Li, Lijuan & Zeng, Long, 2016. "A review of renewable energy utilization in islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 504-513.
    26. Faiers, Adam & Neame, Charles, 2006. "Consumer attitudes towards domestic solar power systems," Energy Policy, Elsevier, vol. 34(14), pages 1797-1806, September.
    27. Faruqui, Ahmad & George, Stephen, 2005. "Quantifying Customer Response to Dynamic Pricing," The Electricity Journal, Elsevier, vol. 18(4), pages 53-63, May.
    28. Gyamfi, Samuel & Krumdieck, Susan & Urmee, Tania, 2013. "Residential peak electricity demand response—Highlights of some behavioural issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 71-77.
    29. Gyamfi, Samuel & Krumdieck, Susan, 2011. "Price, environment and security: Exploring multi-modal motivation in voluntary residential peak demand response," Energy Policy, Elsevier, vol. 39(5), pages 2993-3004, May.
    30. Khan, Ahsan Raza & Mahmood, Anzar & Safdar, Awais & Khan, Zafar A. & Khan, Naveed Ahmed, 2016. "Load forecasting, dynamic pricing and DSM in smart grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1311-1322.
    31. Alexandra-Gwyn Paetz & Elisabeth Dütschke & Wolf Fichtner, 2012. "Smart Homes as a Means to Sustainable Energy Consumption: A Study of Consumer Perceptions," Journal of Consumer Policy, Springer, vol. 35(1), pages 23-41, March.
    32. Wissner, Matthias, 2011. "The Smart Grid - A saucerful of secrets?," Applied Energy, Elsevier, vol. 88(7), pages 2509-2518, July.
    33. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    34. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    35. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    36. Ellabban, Omar & Abu-Rub, Haitham, 2016. "Smart grid customers' acceptance and engagement: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1285-1298.
    37. Alexander, Barbara R., 2010. "Dynamic Pricing? Not So Fast! A Residential Consumer Perspective," The Electricity Journal, Elsevier, vol. 23(6), pages 39-49, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolas Schöne & Kathrin Greilmeier & Boris Heinz, 2022. "Survey-Based Assessment of the Preferences in Residential Demand Response on the Island of Mayotte," Energies, MDPI, vol. 15(4), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopes, Marta A.R. & Henggeler Antunes, Carlos & Janda, Kathryn B. & Peixoto, Paulo & Martins, Nelson, 2016. "The potential of energy behaviours in a smart(er) grid: Policy implications from a Portuguese exploratory study," Energy Policy, Elsevier, vol. 90(C), pages 233-245.
    2. Yash Chawla & Anna Kowalska-Pyzalska, 2019. "Public Awareness and Consumer Acceptance of Smart Meters among Polish Social Media Users," Energies, MDPI, vol. 12(14), pages 1-27, July.
    3. Christine Milchram & Geerten Van de Kaa & Neelke Doorn & Rolf Künneke, 2018. "Moral Values as Factors for Social Acceptance of Smart Grid Technologies," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    4. Nikolaos Iliopoulos & Motoharu Onuki & Miguel Esteban, 2021. "Shedding Light on the Factors That Influence Residential Demand Response in Japan," Energies, MDPI, vol. 14(10), pages 1-23, May.
    5. Anna Kowalska-Pyzalska & Katarzyna Byrka, 2019. "Determinants of the Willingness to Energy Monitoring by Residential Consumers: A Case Study in the City of Wroclaw in Poland," Energies, MDPI, vol. 12(5), pages 1-20, March.
    6. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    7. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    8. Srivastava, Aman & Van Passel, Steven & Kessels, Roselinde & Valkering, Pieter & Laes, Erik, 2020. "Reducing winter peaks in electricity consumption: A choice experiment to structure demand response programs," Energy Policy, Elsevier, vol. 137(C).
    9. Yash Chawla & Anna Kowalska-Pyzalska & Widayat Widayat, 2019. "Consumer Willingness and Acceptance of Smart Meters in Indonesia," Resources, MDPI, vol. 8(4), pages 1-23, November.
    10. Nikolas Schöne & Kathrin Greilmeier & Boris Heinz, 2022. "Survey-Based Assessment of the Preferences in Residential Demand Response on the Island of Mayotte," Energies, MDPI, vol. 15(4), pages 1-30, February.
    11. Hobman, Elizabeth V. & Frederiks, Elisha R. & Stenner, Karen & Meikle, Sarah, 2016. "Uptake and usage of cost-reflective electricity pricing: Insights from psychology and behavioural economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 455-467.
    12. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
    13. Srivastava, A. & Van Passel, S. & Valkering, P. & Laes, E.J.W., 2021. "Power outages and bill savings: A choice experiment on residential demand response acceptability in Delhi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Dorotić, Hrvoje & Doračić, Borna & Dobravec, Viktorija & Pukšec, Tomislav & Krajačić, Goran & Duić, Neven, 2019. "Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 109-124.
    15. Lim, Keumju & Lee, Jongsu & Lee, Hyunjoo, 2021. "Implementing automated residential demand response in South Korea: Consumer preferences and market potential," Utilities Policy, Elsevier, vol. 70(C).
    16. Gonçalves, Luisa & Patrício, Lia, 2022. "From smart technologies to value cocreation and customer engagement with smart energy services," Energy Policy, Elsevier, vol. 170(C).
    17. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    18. Sarran, Lucile & Gunay, H. Burak & O'Brien, William & Hviid, Christian A. & Rode, Carsten, 2021. "A data-driven study of thermostat overrides during demand response events," Energy Policy, Elsevier, vol. 153(C).
    19. Ilaria Vigna & Jessica Balest & Wilmer Pasut & Roberta Pernetti, 2020. "Office Occupants’ Perspective Dealing with Energy Flexibility: A Large-Scale Survey in the Province of Bolzano," Energies, MDPI, vol. 13(17), pages 1-20, August.
    20. Milchram, Christine & Hillerbrand, Rafaela & van de Kaa, Geerten & Doorn, Neelke & Künneke, Rolf, 2018. "Energy Justice and Smart Grid Systems: Evidence from the Netherlands and the United Kingdom," Applied Energy, Elsevier, vol. 229(C), pages 1244-1259.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6218-:d:646125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.