IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v137y2020ics0301421519307694.html
   My bibliography  Save this article

Reducing winter peaks in electricity consumption: A choice experiment to structure demand response programs

Author

Listed:
  • Srivastava, Aman
  • Van Passel, Steven
  • Kessels, Roselinde
  • Valkering, Pieter
  • Laes, Erik

Abstract

Winter peaks in Belgian electricity demand are significantly higher than the summer peaks, creating a greater potential for imbalances between demand and supply. This potential is exacerbated because of the risk of outages in its ageing nuclear power plants, which are being phased out in the medium term. This paper conducts a choice experiment to investigate the acceptability of a load control-based demand response program in the winter months. It surveys 186 respondents on their willingness to accept limits on the use of home appliances in return for a compensation. Results indicate that respondents are most affected by the days of the week that their appliance usage would be curtailed, and by the compensation they would receive. The willingness to enroll in a program increases with age, environmental consciousness, home ownership, and lower privacy concerns. The analysis predicts that 95% of the sample surveyed could enroll in a daily load control program for a compensation of €41 per household per year. Thus while an initial rollout among older and more pro-environment homeowners could be successful, a wider implementation would require an explanation of its environmental and financial benefits to the population, and a greater consideration of their data privacy concerns.

Suggested Citation

  • Srivastava, Aman & Van Passel, Steven & Kessels, Roselinde & Valkering, Pieter & Laes, Erik, 2020. "Reducing winter peaks in electricity consumption: A choice experiment to structure demand response programs," Energy Policy, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519307694
    DOI: 10.1016/j.enpol.2019.111183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519307694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.111183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bennett, Michael T. & Gong, Yazhen & Scarpa, Riccardo, 2018. "Hungry Birds and Angry Farmers: Using Choice Experiments to Assess “Eco-compensation” for Coastal Wetlands Protection in China," Ecological Economics, Elsevier, vol. 154(C), pages 71-87.
    2. Huh, Sung-Yoon & Woo, JongRoul & Lim, Sesil & Lee, Yong-Gil & Kim, Chang Seob, 2015. "What do customers want from improved residential electricity services? Evidence from a choice experiment," Energy Policy, Elsevier, vol. 85(C), pages 410-420.
    3. Byun, Hyunsuk & Lee, Chul-Yong, 2017. "Analyzing Korean consumers’ latent preferences for electricity generation sources with a hierarchical Bayesian logit model in a discrete choice experiment," Energy Policy, Elsevier, vol. 105(C), pages 294-302.
    4. Roselinde Kessels & Peter Goos & Bradley Jones & Martina Vandebroek, 2011. "Rejoinder: the usefulness of Bayesian optimal designs for discrete choice experiments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 27(3), pages 197-203, May.
    5. Bartusch, Cajsa & Wallin, Fredrik & Odlare, Monica & Vassileva, Iana & Wester, Lars, 2011. "Introducing a demand-based electricity distribution tariff in the residential sector: Demand response and customer perception," Energy Policy, Elsevier, vol. 39(9), pages 5008-5025, September.
    6. Ozbafli, Aygul & Jenkins, Glenn P., 2016. "Estimating the willingness to pay for reliable electricity supply: A choice experiment study," Energy Economics, Elsevier, vol. 56(C), pages 443-452.
    7. Brent, Daniel A. & Friesen, Lana & Gangadharan, Lata & Leibbrandt, Andreas, 2017. "Behavioral Insights from Field Experiments in Environmental Economics," International Review of Environmental and Resource Economics, now publishers, vol. 10(2), pages 95-143, May.
    8. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    9. Buryk, Stephen & Mead, Doug & Mourato, Susana & Torriti, Jacopo, 2015. "Investigating preferences for dynamic electricity tariffs: The effect of environmental and system benefit disclosure," Energy Policy, Elsevier, vol. 80(C), pages 190-195.
    10. Gyamfi, Samuel & Krumdieck, Susan & Urmee, Tania, 2013. "Residential peak electricity demand response—Highlights of some behavioural issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 71-77.
    11. Darby, Sarah J. & McKenna, Eoghan, 2012. "Social implications of residential demand response in cool temperate climates," Energy Policy, Elsevier, vol. 49(C), pages 759-769.
    12. Abrate, Graziano & Bruno, Clementina & Erbetta, Fabrizio & Fraquelli, Giovanni & Lorite-Espejo, Azahara, 2016. "A choice experiment on the willingness of households to accept power outages," Utilities Policy, Elsevier, vol. 43(PB), pages 151-164.
    13. Ericson, Torgeir, 2011. "Households' self-selection of dynamic electricity tariffs," Applied Energy, Elsevier, vol. 88(7), pages 2541-2547, July.
    14. Hall, Nina L. & Jeanneret, Talia D. & Rai, Alan, 2016. "Cost-reflective electricity pricing: Consumer preferences and perceptions," Energy Policy, Elsevier, vol. 95(C), pages 62-72.
    15. Pepermans, Guido, 2014. "Valuing smart meters," Energy Economics, Elsevier, vol. 45(C), pages 280-294.
    16. Roselinde Kessels & Bradley Jones & Peter Goos & Martina Vandebroek, 2011. "The usefulness of Bayesian optimal designs for discrete choice experiments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 27(3), pages 173-188, May.
    17. Plum, Christiane & Olschewski, Roland & Jobin, Marilou & van Vliet, Oscar, 2019. "Public preferences for the Swiss electricity system after the nuclear phase-out: A choice experiment," Energy Policy, Elsevier, vol. 130(C), pages 181-196.
    18. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    19. Andersen, Frits Møller & Baldini, Mattia & Hansen, Lars Gårn & Jensen, Carsten Lynge, 2017. "Households’ hourly electricity consumption and peak demand in Denmark," Applied Energy, Elsevier, vol. 208(C), pages 607-619.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Oijstaeijen, Wito & Van Passel, Steven & Back, Phil & Cools, Jan, 2022. "The politics of green infrastructure: A discrete choice experiment with Flemish local decision-makers," Ecological Economics, Elsevier, vol. 199(C).
    2. Kim, Kyungah & Choi, Jihye & Lee, Jihee & Lee, Jongsu & Kim, Junghun, 2023. "Public preferences and increasing acceptance of time-varying electricity pricing for demand side management in South Korea," Energy Economics, Elsevier, vol. 119(C).
    3. Adrian Tantau & András Puskás-Tompos & Costel Stanciu & Laurentiu Fratila & Catalin Curmei, 2021. "Key Factors Which Contribute to the Participation of Consumers in Demand Response Programs and Enable the Proliferation of Renewable Energy Sources," Energies, MDPI, vol. 14(24), pages 1-22, December.
    4. Brewer, Dylan, 2023. "Household responses to winter heating costs: Implications for energy pricing policies and demand-side alternatives," Energy Policy, Elsevier, vol. 177(C).
    5. Shi, Zhengyu & Wu, Libo & Zhou, Yang, 2023. "Predicting household energy consumption in an aging society," Applied Energy, Elsevier, vol. 352(C).
    6. Will, Christian & Lehmann, Nico & Baumgartner, Nora & Feurer, Sven & Jochem, Patrick & Fichtner, Wolf, 2022. "Consumer understanding and evaluation of carbon-neutral electric vehicle charging services," Applied Energy, Elsevier, vol. 313(C).
    7. Adrian Tantau & András Puskás-Tompos & Laurentiu Fratila & Costel Stanciu, 2021. "Acceptance of Demand Response and Aggregators as a Solution to Optimize the Relation between Energy Producers and Consumers in order to Increase the Amount of Renewable Energy in the Grid," Energies, MDPI, vol. 14(12), pages 1-19, June.
    8. Lehmann, Nico & Sloot, Daniel & Ardone, Armin & Fichtner, Wolf, 2022. "Consumer preferences for the design of a demand response quota scheme – Results of a choice experiment in Germany," Energy Policy, Elsevier, vol. 167(C).
    9. Ali Ghofrani & Esmat Zaidan & Mohsen Jafari, 2021. "Reshaping energy policy based on social and human dimensions: an analysis of human-building interactions among societies in transition in GCC countries," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-26, December.
    10. Mark Tocock & Dugald Tinch & Darla Hatton MacDonald & John M. Rose, 2023. "Managing the energy trilemma of reliability, affordability and renewables: Assessing consumer demands with discrete choice experiments," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 155-175, April.
    11. Daiva Stanelyte & Neringa Radziukyniene & Virginijus Radziukynas, 2022. "Overview of Demand-Response Services: A Review," Energies, MDPI, vol. 15(5), pages 1-31, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srivastava, A. & Van Passel, S. & Valkering, P. & Laes, E.J.W., 2021. "Power outages and bill savings: A choice experiment on residential demand response acceptability in Delhi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Yan, Xing & Ozturk, Yusuf & Hu, Zechun & Song, Yonghua, 2018. "A review on price-driven residential demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 411-419.
    3. Ruokamo, Enni & Kopsakangas-Savolainen, Maria & Meriläinen, Teemu & Svento, Rauli, 2019. "Towards flexible energy demand – Preferences for dynamic contracts, services and emissions reductions," Energy Economics, Elsevier, vol. 84(C).
    4. Kim, Kyungah & Choi, Jihye & Lee, Jihee & Lee, Jongsu & Kim, Junghun, 2023. "Public preferences and increasing acceptance of time-varying electricity pricing for demand side management in South Korea," Energy Economics, Elsevier, vol. 119(C).
    5. Bertsch, Valentin & Harold, Jason & Fell, Harrison, 2019. "Consumer preferences for end-use specific curtailable electricity contracts on household appliances during peak load hours," Papers WP632, Economic and Social Research Institute (ESRI).
    6. Fait, Larissa & Wetzel, Heike & Groh, Elke D., 2020. "Choice Preferences for Regional and Green Electricity: Influence of Regional and Environmental Identity," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224574, Verein für Socialpolitik / German Economic Association.
    7. Dana Abi Ghanem & Tracey Crosbie, 2021. "The Transition to Clean Energy: Are People Living in Island Communities Ready for Smart Grids and Demand Response?," Energies, MDPI, vol. 14(19), pages 1-26, September.
    8. Harold, Jason & Bertsch, Valentin & Fell, Harrison, 2021. "Preferences for curtailable electricity contracts: Can curtailment benefit consumers and the electricity system?," Energy Economics, Elsevier, vol. 102(C).
    9. Gołębiowska, Bernadeta & Bartczak, Anna & Budziński, Wiktor, 2021. "Impact of social comparison on preferences for Demand Side Management in Poland," Energy Policy, Elsevier, vol. 149(C).
    10. Swantje Sundt & Katrin Rehdanz & Jürgen Meyerhoff, 2020. "Consumers’ Willingness to Accept Time-of-Use Tariffs for Shifting Electricity Demand," Energies, MDPI, vol. 13(8), pages 1-17, April.
    11. Bernadeta Gołębiowska, 2020. "Preferences for demand side management—a review of choice experiment studies," Working Papers 2020-05, Faculty of Economic Sciences, University of Warsaw.
    12. Meles, Tensay Hadush & Ryan, Lisa & Mukherjee, Sanghamitra C., 2022. "Heterogeneity in preferences for renewable home heating systems among Irish households," Applied Energy, Elsevier, vol. 307(C).
    13. Burns, Kelly & Mountain, Bruce, 2021. "Do households respond to Time-Of-Use tariffs? Evidence from Australia," Energy Economics, Elsevier, vol. 95(C).
    14. Sung-Yoon Huh & Chul-Yong Lee, 2017. "A Demand-Side Perspective on Developing a Future Electricity Generation Mix: Identifying Heterogeneity in Social Preferences," Energies, MDPI, vol. 10(8), pages 1-19, August.
    15. Bartusch, Cajsa & Alvehag, Karin, 2014. "Further exploring the potential of residential demand response programs in electricity distribution," Applied Energy, Elsevier, vol. 125(C), pages 39-59.
    16. Hye-Jeong Lee & Beom Jin Chung & Sung-Yoon Huh, 2023. "Consumer Preferences for Smart Energy Services Based on AMI Data in the Power Sector," Energies, MDPI, vol. 16(9), pages 1-20, May.
    17. El Gohary, Fouad & Stikvoort, Britt & Bartusch, Cajsa, 2023. "Evaluating demand charges as instruments for managing peak-demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Kayo MURAKAMI & Takanori IDA, 2019. "Deregulation and status quo bias: Evidence from stated and revealed switching behaviors in the electricity market in Japan," Discussion papers e-19-001, Graduate School of Economics , Kyoto University.
    19. Nakai, Miwa & von Loessl, Victor & Wetzel, Heike, 2024. "Preferences for dynamic electricity tariffs: A comparison of households in Germany and Japan," Ecological Economics, Elsevier, vol. 223(C).
    20. Frischknecht, Bart D. & Eckert, Christine & Geweke, John & Louviere, Jordan J., 2014. "A simple method for estimating preference parameters for individuals," International Journal of Research in Marketing, Elsevier, vol. 31(1), pages 35-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519307694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.