IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5934-d638479.html
   My bibliography  Save this article

Forecasting and Assessment of the Energy Security Risk in Fuzzy Environment

Author

Listed:
  • Paweł Ziemba

    (Institute of Management, University of Szczecin, Aleja Papieża Jana Pawła II 22A, 70-453 Szczecin, Poland)

  • Aneta Becker

    (Faculty of Economics, West Pomeranian University of Technology, Janickiego 31, 71-210 Szczecin, Poland)

  • Jarosław Becker

    (Faculty of Technology, The Jacob of Paradies University, Chopina 52, 66-400 Gorzów Wielkopolski, Poland)

Abstract

Energy security is of key importance for states and international organizations. An important issue in energy security is the assessment of current and future energy security methods. While the assessment of the current methods is relatively easy, since it is based on recent information, the assessment of the future methods is burdened with uncertainty and is therefore much more difficult. Therefore, the aim of the article is to develop a new approach for assessing current and future energy security issues based on a complex security index, supported by the computationally transparent fuzzy multi-criteria decision analysis (MCDA) method. The use of the fuzzy MCDA methods allows one to capture the uncertainty of assessments and forecasts, and the forecasts themselves were based on the Holt’s method; the international energy security risk index (IESRI) was used as the source of the data to generate the forecasts. The research compared two data sources for forecasts (IESRI categories and metrics) and two methods of forecast fuzzification. As a result, the forecasted assessments and rankings of energy security for the 2020–2030 period were obtained. On the basis of these forecasts, general trends shaping energy security were also indicated.

Suggested Citation

  • Paweł Ziemba & Aneta Becker & Jarosław Becker, 2021. "Forecasting and Assessment of the Energy Security Risk in Fuzzy Environment," Energies, MDPI, vol. 14(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5934-:d:638479
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5934/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5934/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chou, Shuo-Yan & Chang, Yao-Hui & Shen, Chun-Ying, 2008. "A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes," European Journal of Operational Research, Elsevier, vol. 189(1), pages 132-145, August.
    2. Badea, Anca Costescu & Rocco S., Claudio M. & Tarantola, Stefano & Bolado, Ricardo, 2011. "Composite indicators for security of energy supply using ordered weighted averaging," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 651-662.
    3. Paweł Ziemba, 2021. "Multi-Criteria Fuzzy Evaluation of the Planned Offshore Wind Farm Investments in Poland," Energies, MDPI, vol. 14(4), pages 1-19, February.
    4. Abdelrahman Azzuni & Christian Breyer, 2020. "Global Energy Security Index and Its Application on National Level," Energies, MDPI, vol. 13(10), pages 1-49, May.
    5. Muñoz, Beatriz & García-Verdugo, Javier & San-Martín, Enrique, 2015. "Quantifying the geopolitical dimension of energy risks: A tool for energy modelling and planning," Energy, Elsevier, vol. 82(C), pages 479-500.
    6. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
    7. Paweł Ziemba, 2019. "Towards Strong Sustainability Management—A Generalized PROSA Method," Sustainability, MDPI, vol. 11(6), pages 1-29, March.
    8. Malo Huard & Rémy Garnier & Gilles Stoltz, 2020. "Hierarchical robust aggregation of sales forecasts at aggregated levels in e-commerce, based on exponential smoothing and Holt's linear trend method," Working Papers hal-02794320, HAL.
    9. Lu, Weiwei & Su, Meirong & Zhang, Yan & Yang, Zhifeng & Chen, Bin & Liu, Gengyuan, 2014. "Assessment of energy security in China based on ecological network analysis: A perspective from the security of crude oil supply," Energy Policy, Elsevier, vol. 74(C), pages 406-413.
    10. Aida Sa & Patrik Thollander & Majid Rafiee, 2018. "Industrial Energy Management Systems and Energy-Related Decision-Making," Energies, MDPI, vol. 11(10), pages 1-12, October.
    11. Valentine, Scott Victor, 2011. "Emerging symbiosis: Renewable energy and energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4572-4578.
    12. Lin, Boqiang & Raza, Muhammad Yousaf, 2020. "Analysis of energy security indicators and CO2 emissions. A case from a developing economy," Energy, Elsevier, vol. 200(C).
    13. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    14. Jinchao Li & Lina Wang & Tianzhi Li & Shaowen Zhu, 2019. "Energy Security Pattern Spatiotemporal Evolution and Strategic Analysis of G20 Countries," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    15. Augutis, Juozas & Krikštolaitis, Ričardas & Martišauskas, Linas & Urbonienė, Sigita & Urbonas, Rolandas & Ušpurienė, Aistė Barbora, 2020. "Analysis of energy security level in the Baltic States based on indicator approach," Energy, Elsevier, vol. 199(C).
    16. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
    17. Corey Johnson & Tim Boersma, 2015. "The politics of energy security: contrasts between the United States and the European Union," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 171-177, March.
    18. Le Coq, Chloé & Paltseva, Elena, 2009. "Measuring the security of external energy supply in the European Union," Energy Policy, Elsevier, vol. 37(11), pages 4474-4481, November.
    19. Abdelrahman Azzuni & Christian Breyer, 2018. "Definitions and dimensions of energy security: a literature review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(1), January.
    20. Paweł Ziemba & Jarosław Wątróbski & Jarosław Jankowski & Mateusz Piwowarski, 2016. "Research on the Properties of the AHP in the Environment of Inaccurate Expert Evaluations," Springer Proceedings in Business and Economics, in: Kesra Nermend & Małgorzata Łatuszyńska (ed.), Selected Issues in Experimental Economics, edition 1, chapter 0, pages 227-243, Springer.
    21. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    22. Iztok Podbregar & Goran Šimić & Mirjana Radovanović & Sanja Filipović & Polona Šprajc, 2020. "International Energy Security Risk Index—Analysis of the Methodological Settings," Energies, MDPI, vol. 13(12), pages 1-15, June.
    23. Chernyak Oleksandr & Kharlamova Ganna & Stavytskyy Andriy, 2018. "Trends of International Energy Security Risk Index in European Countries," TalTech Journal of European Studies, Sciendo, vol. 8(1), pages 5-32, June.
    24. M. Saisana & A. Saltelli & S. Tarantola, 2005. "Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 307-323, March.
    25. Paweł Ziemba, 2020. "Multi-Criteria Stochastic Selection of Electric Vehicles for the Sustainable Development of Local Government and State Administration Units in Poland," Energies, MDPI, vol. 13(23), pages 1-19, November.
    26. Erahman, Qodri Febrilian & Purwanto, Widodo Wahyu & Sudibandriyo, Mahmud & Hidayatno, Akhmad, 2016. "An assessment of Indonesia's energy security index and comparison with seventy countries," Energy, Elsevier, vol. 111(C), pages 364-376.
    27. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
    28. Paweł Ziemba, 2019. "Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management," Energies, MDPI, vol. 12(4), pages 1-29, February.
    29. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.
    2. Erik Möllerström, 2022. "Energy—History and Time Trends: Special Issue Editorial," Energies, MDPI, vol. 15(15), pages 1-3, July.
    3. Paweł Ziemba, 2021. "Selection of Electric Vehicles for the Needs of Sustainable Transport under Conditions of Uncertainty—A Comparative Study on Fuzzy MCDA Methods," Energies, MDPI, vol. 14(22), pages 1-25, November.
    4. Paweł Ziemba, 2022. "Energy Security Assessment Based on a New Dynamic Multi-Criteria Decision-Making Framework," Energies, MDPI, vol. 15(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Ziemba, 2022. "Energy Security Assessment Based on a New Dynamic Multi-Criteria Decision-Making Framework," Energies, MDPI, vol. 15(24), pages 1-18, December.
    2. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.
    3. Abdelrahman Azzuni & Christian Breyer, 2020. "Global Energy Security Index and Its Application on National Level," Energies, MDPI, vol. 13(10), pages 1-49, May.
    4. Augutis, Juozas & Krikštolaitis, Ričardas & Martišauskas, Linas & Urbonienė, Sigita & Urbonas, Rolandas & Ušpurienė, Aistė Barbora, 2020. "Analysis of energy security level in the Baltic States based on indicator approach," Energy, Elsevier, vol. 199(C).
    5. Iztok Podbregar & Goran Šimić & Mirjana Radovanović & Sanja Filipović & Damjan Maletič & Polona Šprajc, 2020. "The International Energy Security Risk Index in Sustainable Energy and Economy Transition Decision Making—A Reliability Analysis," Energies, MDPI, vol. 13(14), pages 1-16, July.
    6. Iztok Podbregar & Goran Šimić & Mirjana Radovanović & Sanja Filipović & Polona Šprajc, 2020. "International Energy Security Risk Index—Analysis of the Methodological Settings," Energies, MDPI, vol. 13(12), pages 1-15, June.
    7. De Rosa, Mattia & Gainsford, Kenneth & Pallonetto, Fabiano & Finn, Donal P., 2022. "Diversification, concentration and renewability of the energy supply in the European Union," Energy, Elsevier, vol. 253(C).
    8. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).
    9. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    10. Paweł Ziemba, 2021. "Selection of Electric Vehicles for the Needs of Sustainable Transport under Conditions of Uncertainty—A Comparative Study on Fuzzy MCDA Methods," Energies, MDPI, vol. 14(22), pages 1-25, November.
    11. Zhang, Mingming & Zhou, Simei & Wang, Qunwei & Liu, Liyun & Zhou, Dequn, 2023. "Will the carbon neutrality target impact China's energy security? A dynamic Bayesian network model," Energy Economics, Elsevier, vol. 125(C).
    12. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    13. Wang, Jiangquan & Shahbaz, Muhammad & Song, Malin, 2021. "Evaluating energy economic security and its influencing factors in China," Energy, Elsevier, vol. 229(C).
    14. Abdelrahman Azzuni & Arman Aghahosseini & Manish Ram & Dmitrii Bogdanov & Upeksha Caldera & Christian Breyer, 2020. "Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    15. Tomasz Rokicki & Aleksandra Perkowska, 2021. "Diversity and Changes in the Energy Balance in EU Countries," Energies, MDPI, vol. 14(4), pages 1-19, February.
    16. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    17. Yuyan Jiang & Xueli Liu, 2023. "A Bibliometric Analysis and Disruptive Innovation Evaluation for the Field of Energy Security," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    18. Walter Leal Filho & Abdul-Lateef Balogun & Dinesh Surroop & Amanda Lange Salvia & Kapil Narula & Chunlan Li & Julian David Hunt & Andrea Gatto & Ayyoob Sharifi & Haibo Feng & Stella Tsani & Hossein Az, 2022. "Realising the Potential of Renewable Energy as a Tool for Energy Security in Small Island Developing States," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    19. Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.
    20. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5934-:d:638479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.