IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5936-d444740.html
   My bibliography  Save this article

Biomass Steam Gasification, High-Temperature Gas Cleaning, and SOFC Model: A Parametric Analysis

Author

Listed:
  • Vera Marcantonio

    (Department of Agricultural and Forestry Sciences (DAFNE), Tuscia University of Viterbo, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy)

  • Danilo Monarca

    (Department of Agricultural and Forestry Sciences (DAFNE), Tuscia University of Viterbo, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy)

  • Mauro Villarini

    (Department of Agricultural and Forestry Sciences (DAFNE), Tuscia University of Viterbo, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy)

  • Andrea Di Carlo

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, Via San Giovanni Gronchi 18, 67100 L’Aquila, Italy)

  • Luca Del Zotto

    (CREAT, Centro di Ricerca su Energia, Ambiente e Territorio, Università Telematica eCampus, 22060 Novedrate, Italy)

  • Enrico Bocci

    (Department of Nuclear, Subnuclear and Radiation Physics, Marconi University, 00193 Rome, Italy)

Abstract

Gasification technology is actually one of the most effective ways to produce power and hydrogen from biomass. Solid oxide fuel cells (SOFCs) have proved to be an excellent energy conversion device. They can transform the chemical energy content in the syngas, produced by a gasifier, directly into electrical energy. A steady-state model of a biomass-SOFC was developed using process simulation software, ASPEN Plus (10, AspenTech, Bedford, MA, USA). The objective of this work was to implement a biomass-SOFC system capable of predicting performance under diverse operating conditions. The system is made of a gasification zone, gas cleaning steps, and SOFC. The SOFC modelling was done without external subroutines, unlike most models in the literature, using only the existing ASPEN Plus blocks, making the model simpler and more reliable. The analysis of the syngas composition out of each cleaning step is in accordance with literature data. Then, a sensitivity analysis was carried out on the main parameters. The results indicate that there must be a trade-off between voltage, electrical efficiency, and power with respect to current density and it is preferable to stay at a low steam-to-biomass ratio. The electrical efficiency achieved under the operating conditions is 57%, a high value, making these systems very attractive.

Suggested Citation

  • Vera Marcantonio & Danilo Monarca & Mauro Villarini & Andrea Di Carlo & Luca Del Zotto & Enrico Bocci, 2020. "Biomass Steam Gasification, High-Temperature Gas Cleaning, and SOFC Model: A Parametric Analysis," Energies, MDPI, vol. 13(22), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5936-:d:444740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5936/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5936/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
    2. Baruah, Dipal & Baruah, D.C., 2014. "Modeling of biomass gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 806-815.
    3. Vera Marcantonio & Enrico Bocci & Danilo Monarca, 2019. "Development of a Chemical Quasi-Equilibrium Model of Biomass Waste Gasification in a Fluidized-Bed Reactor by Using Aspen Plus," Energies, MDPI, vol. 13(1), pages 1-15, December.
    4. Lauri, Pekka & Havlík, Petr & Kindermann, Georg & Forsell, Nicklas & Böttcher, Hannes & Obersteiner, Michael, 2014. "Woody biomass energy potential in 2050," Energy Policy, Elsevier, vol. 66(C), pages 19-31.
    5. N. Florin & A. Harris, 2007. "Hydrogen production from biomass," Environment Systems and Decisions, Springer, vol. 27(1), pages 207-215, March.
    6. He, Lixia & English, Burton C. & De La Torre Ugarte, Daniel G. & Hodges, Donald G., 2014. "Woody biomass potential for energy feedstock in United States," Journal of Forest Economics, Elsevier, vol. 20(2), pages 174-191.
    7. Abrar Inayat & Murni M. Ahmad & Suzana Yusup & Mohamed Ibrahim Abdul Mutalib, 2010. "Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach," Energies, MDPI, vol. 3(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donald Ukpanyang & Julio Terrados-Cepeda, 2022. "Decarbonizing Vehicle Transportation with Hydrogen from Biomass Gasification: An Assessment in the Nigerian Urban Environment," Energies, MDPI, vol. 15(9), pages 1-23, April.
    2. Alejandro López-Fernández & David Bolonio & Isabel Amez & Blanca Castells & Marcelo F. Ortega & María-Jesús García-Martínez, 2021. "Design and Pinch Analysis of a GFT Process for Production of Biojet Fuel from Biomass and Plastics," Energies, MDPI, vol. 14(19), pages 1-31, September.
    3. Jacek Grams, 2022. "Upgrading of Lignocellulosic Biomass to Hydrogen-Rich Gas," Energies, MDPI, vol. 16(1), pages 1-5, December.
    4. Valentina Segneri & Jean Henry Ferrasse & Antonio Trinca & Giorgio Vilardi, 2022. "An Overview of Waste Gasification and Syngas Upgrading Processes," Energies, MDPI, vol. 15(17), pages 1-7, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vera Marcantonio & Enrico Bocci & Danilo Monarca, 2019. "Development of a Chemical Quasi-Equilibrium Model of Biomass Waste Gasification in a Fluidized-Bed Reactor by Using Aspen Plus," Energies, MDPI, vol. 13(1), pages 1-15, December.
    2. Martino, Gaetano & Polinori, Paolo & Bufacchi, Marina & Rossetti, Enrica, 2020. "The biomass potential availability from olive cropping in Italy in a business perspective: Methodological approach and tentative estimates," Renewable Energy, Elsevier, vol. 156(C), pages 526-534.
    3. Sreejith, C.C. & Haridasan, Navaneeth & Muraleedharan, C. & Arun, P., 2014. "Allothermal air–steam gasification of biomass with CO2 (carbon dioxide) sorption: Performance prediction based on a chemical kinetic model," Energy, Elsevier, vol. 69(C), pages 399-408.
    4. M. Synek & J. Vašíček & M. Zeman, 2014. "Outlook of logging perspectives in the Czech Republic for the period 2013-2032," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 60(9), pages 372-381.
    5. Pala, Laxmi Prasad Rao & Wang, Qi & Kolb, Gunther & Hessel, Volker, 2017. "Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model," Renewable Energy, Elsevier, vol. 101(C), pages 484-492.
    6. Tiziana Maria Sirangelo & Richard Andrew Ludlow & Tatiana Chenet & Luisa Pasti & Natasha Damiana Spadafora, 2023. "Multi-Omics and Genome Editing Studies on Plant Cell Walls to Improve Biomass Quality," Agriculture, MDPI, vol. 13(4), pages 1-19, March.
    7. Yahya, Muhammad & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah & Ghosh, Sajal, 2021. "Can clean energy stock price rule oil price? New evidences from a regime-switching model at first and second moments," Energy Economics, Elsevier, vol. 95(C).
    8. Benítez, Almudena & Amaro-Gahete, Juan & Chien, Yu-Chuan & Caballero, Álvaro & Morales, Julián & Brandell, Daniel, 2022. "Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Randall Jackson & Amir B. Ferreira Neto & Elham Erfanian, 2016. "Woody Biomass Processing: Potential Economic Impacts on Rural Regions," Working Papers Working Paper 2016-04-v3, Regional Research Institute, West Virginia University.
    10. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Wu, Wenchao & Hasegawa, Tomoko & Fujimori, Shinichiro & Takahashi, Kiyoshi & Oshiro, Ken, 2020. "Assessment of bioenergy potential and associated costs in Japan for the 21st century," Renewable Energy, Elsevier, vol. 162(C), pages 308-321.
    12. Ahmed, Tigabwa Y. & Ahmad, Murni M. & Yusup, Suzana & Inayat, Abrar & Khan, Zakir, 2012. "Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2304-2315.
    13. Solarte-Toro, Juan Camilo & González-Aguirre, Jose Andrés & Poveda Giraldo, Jhonny Alejandro & Cardona Alzate, Carlos A., 2021. "Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    14. Bilgen, Selçuk & Keleş, Sedat & Sarıkaya, İkbal & Kaygusuz, Kamil, 2015. "A perspective for potential and technology of bioenergy in Turkey: Present case and future view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 228-239.
    15. Fahmy, Hany, 2022. "The rise in investors’ awareness of climate risks after the Paris Agreement and the clean energy-oil-technology prices nexus," Energy Economics, Elsevier, vol. 106(C).
    16. Vera Marcantonio & Michael Müller & Enrico Bocci, 2021. "A Review of Hot Gas Cleaning Techniques for Hydrogen Chloride Removal from Biomass-Derived Syngas," Energies, MDPI, vol. 14(20), pages 1-15, October.
    17. María Pilar González-Vázquez & Fernando Rubiera & Covadonga Pevida & Daniel T. Pio & Luís A.C. Tarelho, 2021. "Thermodynamic Analysis of Biomass Gasification Using Aspen Plus: Comparison of Stoichiometric and Non-Stoichiometric Models," Energies, MDPI, vol. 14(1), pages 1-17, January.
    18. Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    19. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    20. Joseph I. Orisaleye & Simeon O. Jekayinfa & Ralf Pecenka & Adebayo A. Ogundare & Michael O. Akinseloyin & Opeyemi L. Fadipe, 2022. "Investigation of the Effects of Torrefaction Temperature and Residence Time on the Fuel Quality of Corncobs in a Fixed-Bed Reactor," Energies, MDPI, vol. 15(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5936-:d:444740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.