Author
Listed:
- Wenxian Hu
(School of Management, China University of Mining and Technology-Beijing, Beijing 100083, China)
- Xudong Sun
(School of Management, China University of Mining and Technology-Beijing, Beijing 100083, China
Engineering Research Center of Integration and Application of Digital Learning Technology, Ministry of Education, Beijing 100039, China)
- Yating Qin
(School of Management, China University of Mining and Technology-Beijing, Beijing 100083, China)
Abstract
Solid Oxide Fuel Cells (SOFCs) offer high-efficiency electrochemical conversion of fuels like natural gas, yet detailed modeling is crucial for optimization. This paper presents a simulation study of a natural gas-fueled SOFC system, developed using Aspen Plus with Fortran integration. Distinct from prevalent paradigms assuming rated power output, this work adopts rated current density as the primary input, enabling a more direct investigation of the cell’s electrochemical behavior. We conducted a comprehensive sensitivity analysis of key parameters, including fuel utilization, water-carbon ratio, and current density, and further investigated the impact of different interconnection configurations on overall module performance. Results demonstrate that a single unit operating at a current density of 180 mA/cm 2 , a fuel utilization of 0.75, and a water-carbon ratio of 1.5 can achieve a maximum net stack-level electrical efficiency of 54%. Furthermore, optimizing the interconnection of a 400 kW module by combining series and parallel units boosts the overall net system-level electrical efficiency to 59%, a 5-percentage-point increase over traditional parallel setups. This is achieved by utilizing a bottoming cycle for exhaust heat recovery. This research validates the rated current density approach for SOFC modeling, offering novel insights into performance optimization and modular design for integrated energy systems.
Suggested Citation
Wenxian Hu & Xudong Sun & Yating Qin, 2025.
"Simulation of a Natural Gas Solid Oxide Fuel Cell System Based on Rated Current Density Input,"
Energies, MDPI, vol. 18(16), pages 1-20, August.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:16:p:4456-:d:1729812
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4456-:d:1729812. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.