IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v336y2023ics0306261923001861.html
   My bibliography  Save this article

Thermodynamic analysis of SOFC–CCHP system based on municipal sludge plasma gasification with carbon capture

Author

Listed:
  • Zhang, Jifu
  • Cui, Peizhe
  • Yang, Sheng
  • Zhou, Yaru
  • Du, Wei
  • Wang, Yinglong
  • Deng, Chengwei
  • Wang, Shuai

Abstract

To solve the environmental problems associated with municipal sludge incineration and landfilling, a combined cooling, heating, and power (CCHP) system integrating plasma gasification, solid oxide fuel cell (SOFC), gas turbine, supercritical carbon dioxide (S-CO2) cycle, and double-effect absorption refrigeration cycle (ARC) is proposed. Additionally, the CO2 generated in the system is captured to reduce the environmental impact. Energy, exergy, and sensitivity analyses of the developed system are conducted. Key parameters such as the SOFC temperature, SOFC pressure, and fuel utilization rate affecting the system performance are studied. The results show that net electrical efficiencies of the SOFC and the system are 41.96 % and 50.00 %, respectively. The exergy efficiency and comprehensive energy utilization rate of the system are 47.04 % and 87.59 %, respectively. The system can generate a power of 175.03 kW, cooling of 45.70 kW, and heating of 85.82 kW under the design conditions, accounting for 67.46 %, 21.23 %, and 11.31 % total energy output of system, respectively. The three main sources of exergy destruction of the system are the plasma gasification, SOFC, and supercritical CO2 cycle subsystems, accounting for 36.8 %, 12.2 %, and 10.7 % exergy destruction, respectively. The system performs the best when the SOFC temperature is 910 °C and the fuel utilization rate is between 0.85 and 0.90. The SOFC pressure has little effect on the system performance. In addition, the carbon capture rate of the system can reach 97.50 %. The CCHP system has high thermodynamic efficiency and hence can convert municipal sludge efficiently into clean energy; therefore, this study provides a new concept for resource treatment of urban sludge.

Suggested Citation

  • Zhang, Jifu & Cui, Peizhe & Yang, Sheng & Zhou, Yaru & Du, Wei & Wang, Yinglong & Deng, Chengwei & Wang, Shuai, 2023. "Thermodynamic analysis of SOFC–CCHP system based on municipal sludge plasma gasification with carbon capture," Applied Energy, Elsevier, vol. 336(C).
  • Handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001861
    DOI: 10.1016/j.apenergy.2023.120822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923001861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doherty, Wayne & Reynolds, Anthony & Kennedy, David, 2010. "Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus," Energy, Elsevier, vol. 35(12), pages 4545-4555.
    2. Janajreh, Isam & Adeyemi, Idowu & Raza, Syed Shabbar & Ghenai, Chaouki, 2021. "A review of recent developments and future prospects in gasification systems and their modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Somers, C. & Mortazavi, A. & Hwang, Y. & Radermacher, R. & Rodgers, P. & Al-Hashimi, S., 2011. "Modeling water/lithium bromide absorption chillers in ASPEN Plus," Applied Energy, Elsevier, vol. 88(11), pages 4197-4205.
    4. Jayasekara, Saliya & Halgamuge, Saman K., 2014. "A combined effect absorption chiller for enhanced performance of combined cooling heating and power systems," Applied Energy, Elsevier, vol. 127(C), pages 239-248.
    5. Reyhani, Hamed Akbarpour & Meratizaman, Mousa & Ebrahimi, Armin & Pourali, Omid & Amidpour, Majid, 2016. "Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification," Energy, Elsevier, vol. 107(C), pages 141-164.
    6. Huang, Y.W. & Chen, M.Q. & Li, Q.H. & Xing, W., 2018. "Hydrogen-rich syngas produced from co-gasification of wet sewage sludge and torrefied biomass in self-generated steam agent," Energy, Elsevier, vol. 161(C), pages 202-213.
    7. Fonts, Isabel & Gea, Gloria & Azuara, Manuel & Ábrego, Javier & Arauzo, Jesús, 2012. "Sewage sludge pyrolysis for liquid production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2781-2805.
    8. Perna, Alessandra & Minutillo, Mariagiovanna & Jannelli, Elio & Cigolotti, Viviana & Nam, Suk Woo & Yoon, Kyung Joong, 2018. "Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier," Applied Energy, Elsevier, vol. 227(C), pages 80-91.
    9. Marchionni, Matteo & Bianchi, Giuseppe & Tassou, Savvas A., 2018. "Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state," Energy, Elsevier, vol. 148(C), pages 1140-1152.
    10. Mohammad shafie, Mohammad & Ali rajabipour, & Mehrpooya, Mehdi, 2022. "Investigation of an electrochemical conversion of carbon dioxide to ethanol and solid oxide fuel cell, gas turbine hybrid process," Renewable Energy, Elsevier, vol. 184(C), pages 1112-1129.
    11. Roy, Dibyendu & Samanta, Samiran & Ghosh, Sudip, 2020. "Performance assessment of a biomass fuelled advanced hybrid power generation system," Renewable Energy, Elsevier, vol. 162(C), pages 639-661.
    12. Yang, Xiaoyu & Zhao, Hongbin, 2019. "Thermodynamic performance study of the SOFC-STIG distributed energy system fueled by LNG with CO2 recovery," Energy, Elsevier, vol. 186(C).
    13. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    14. Recalde, Mayra & Woudstra, Theo & Aravind, P.V., 2018. "Renewed sanitation technology: A highly efficient faecal-sludge gasification–solid oxide fuel cell power plant," Applied Energy, Elsevier, vol. 222(C), pages 515-529.
    15. Bellomare, Filippo & Rokni, Masoud, 2013. "Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine," Renewable Energy, Elsevier, vol. 55(C), pages 490-500.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Stričík & Lenka Kuhnová & Miroslav Variny & Petra Szaryszová & Branislav Kršák & Ľubomír Štrba, 2024. "An Opportunity for Coal Thermal Power Plants Facing Phase-Out: Case of the Power Plant Vojany (Slovakia)," Energies, MDPI, vol. 17(3), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yuting & Chen, Heng & Qiao, Shichao & Pan, Peiyuan & Xu, Gang & Dong, Yuehong & Jiang, Xue, 2023. "A novel methanol-electricity cogeneration system based on the integration of water electrolysis and plasma waste gasification," Energy, Elsevier, vol. 267(C).
    2. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    3. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.
    4. Liang, Wenxing & Yu, Zeting & Liu, Wenjing & Ji, Shaobo, 2023. "Investigation of a novel near-zero emission poly-generation system based on biomass gasification and SOFC: A thermodynamic and exergoeconomic evaluation," Energy, Elsevier, vol. 282(C).
    5. Pan, Zehua & Shen, Jian & Wang, Jingyi & Xu, Xinhai & Chan, Wei Ping & Liu, Siyu & Zhou, Yexin & Yan, Zilin & Jiao, Zhenjun & Lim, Teik-Thye & Zhong, Zheng, 2022. "Thermodynamic analyses of a standalone diesel-fueled distributed power generation system based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 308(C).
    6. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    7. Pongratz, Gernot & Subotić, Vanja & Hochenauer, Christoph & Scharler, Robert & Anca-Couce, Andrés, 2022. "Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach," Energy, Elsevier, vol. 244(PB).
    8. Roy, Dibyendu & Samanta, Samiran & Ghosh, Sudip, 2020. "Performance assessment of a biomass fuelled advanced hybrid power generation system," Renewable Energy, Elsevier, vol. 162(C), pages 639-661.
    9. Ouyang, Tiancheng & Zhang, Mingliang & Qin, Peijia & Liu, Wenjun & Shi, Xiaomin, 2022. "Converting waste into electric energy and carbon fixation through biosyngas-fueled SOFC hybrid system: A simulation study," Renewable Energy, Elsevier, vol. 193(C), pages 725-743.
    10. Wang, Heng & Zhao, Hongbin & Du, Huicheng & Zhao, Zefeng & Zhang, Taiheng, 2022. "Thermodynamic performance study of a new diesel-fueled CLHG/SOFC/STIG cogeneration system with CO2 recovery," Energy, Elsevier, vol. 246(C).
    11. Zhao, Hongbin & Jiang, Ting & Hou, Hucan, 2015. "Performance analysis of the SOFC–CCHP system based on H2O/Li–Br absorption refrigeration cycle fueled by coke oven gas," Energy, Elsevier, vol. 91(C), pages 983-993.
    12. Wang, Jiangjiang & Cui, Zhiheng & Yao, Wenqi & Huo, Shuojie, 2023. "Regulation strategies and thermodynamic analysis of combined cooling, heating, and power system integrated with biomass gasification and solid oxide fuel cell," Energy, Elsevier, vol. 266(C).
    13. Lv, Jiayang & Wang, Yinan & Chen, Heng & Li, Wenchao & Pan, Peiyuan & Wu, Lining & Xu, Gang & Zhai, Rongrong, 2023. "Thermodynamic and economic analysis of a conceptual system combining medical waste plasma gasification, SOFC, sludge gasification, supercritical CO2 cycle, and desalination," Energy, Elsevier, vol. 282(C).
    14. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    15. Mushtaq, Faisal & Mat, Ramli & Ani, Farid Nasir, 2014. "A review on microwave assisted pyrolysis of coal and biomass for fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 555-574.
    16. Perna, A. & Minutillo, M. & Jannelli, E. & Cigolotti, V. & Nam, S.W. & Han, J., 2018. "Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC," Applied Energy, Elsevier, vol. 231(C), pages 1216-1229.
    17. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    18. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    19. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    20. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.