IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223032875.html
   My bibliography  Save this article

Performance prediction and regulation of a tubular solid oxide fuel cell and hydrophilic modified tubular still hybrid system for electricity and freshwater cogeneration

Author

Listed:
  • Zhang, Houcheng
  • Li, Jiarui
  • Xue, Yejian
  • Grgur, Branimir N.
  • Li, Jianming

Abstract

Tubular solid oxide fuel cells (TSOFCs) are a promising technology for electricity generation; however, they also generate high-temperature waste heat, leading to reduced efficiency and energy wastage. To address this challenge and unlock the full potential, a novel geometry-matching hybrid system incorporating methane reforming TSOFC and hydrophilic modified tubular still (HMTS) is proposed and modelled. Considering various irreversible losses, vital performance indicators including power output, energy efficiency and exergy efficiency are firstly derived, through which comprehensive thermodynamic performance features of the TSOFC/HMTS hybrid system are predicted. The proposed system design demonstrates a significant advantage by achieving a maximum output power density that is 99.7 % higher and a corresponding energy efficiency that is 57.3 % higher compared to the standalone TSOFC. Extensive parametric analyses reveal that raising the operating temperature or stream/carbon ratio positively enhances the system's performance. Conversely, increasing electrode tortuosity, electrolyte thickness, wind velocity, or tubular shell diameter negatively degrades the system's performance. In addition, the anode thickness is an optimizable parameter. Local sensitivity analyses identify that the operation temperature and electrode tortuosity are, respectively, the most and least sensitive parameters for performance regulation. The findings make a significant step forward in the field of sustainable and innovative energy solutions.

Suggested Citation

  • Zhang, Houcheng & Li, Jiarui & Xue, Yejian & Grgur, Branimir N. & Li, Jianming, 2024. "Performance prediction and regulation of a tubular solid oxide fuel cell and hydrophilic modified tubular still hybrid system for electricity and freshwater cogeneration," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032875
    DOI: 10.1016/j.energy.2023.129893
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.