IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v168y2019icp409-424.html
   My bibliography  Save this article

Prefeasibility techno-economic assessment of a hybrid power plant with photovoltaic, fuel cell and Compressed Air Energy Storage (CAES)

Author

Listed:
  • Sadeghi, Saber
  • Askari, Ighball Baniasad

Abstract

This paper presents a hybrid power generation system comprising of Photovoltaic (PV) panels, Molten Carbonate Fuel Cell (MCFC), Gas Turbine (GT), Thermal Energy Storage (TES), Battery (Bat) and a Compressed Air Energy Storage (CAES) system. The CAES pressure was considered to be regulated using a water reservoir system located at a suitable height place. The described system was designed to supply the electricity needs of 500 households with peak electricity demand of 500 kW. A set up MCFC/GT with power generation rate of 500 kW was considered in the calculations, and the PV system capacity was considered to be changed from 100 kW to 600 kW. The optimal configuration and operational conditions of the system were conducted based on the Levelized Cost of Electricity (LCOE) definition as well as the total annual emission that is occurred by the auxiliary fossil fuel boiler and MCFC systems. The results showed that the overall system efficiency would be increased by about 25%, when the CAES is used and the compressor is switched off. Also, the optimal operational pressure of MCFC was found to be 6 bar for 2000 number of PVs, 1500 kWh of battery storage and CAES capacity of 685 m3.

Suggested Citation

  • Sadeghi, Saber & Askari, Ighball Baniasad, 2019. "Prefeasibility techno-economic assessment of a hybrid power plant with photovoltaic, fuel cell and Compressed Air Energy Storage (CAES)," Energy, Elsevier, vol. 168(C), pages 409-424.
  • Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:409-424
    DOI: 10.1016/j.energy.2018.11.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218323193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Liqiang & Sun, Siyu & Yue, Long & Qu, Wanjun & Yang, Yongping, 2015. "Study on a new IGCC (Integrated Gasification Combined Cycle) system with CO2 capture by integrating MCFC (Molten Carbonate Fuel Cell)," Energy, Elsevier, vol. 87(C), pages 490-503.
    2. Duan, Liqiang & Lu, Hao & Yuan, Mingye & Lv, Zhipeng, 2018. "Optimization and part-load performance analysis of MCFC/ST hybrid power system," Energy, Elsevier, vol. 152(C), pages 682-693.
    3. Wang, Gang & Zhao, Ke & Shi, Jiangtao & Chen, Wei & Zhang, Haiyang & Yang, Xinsheng & Zhao, Yong, 2017. "An iterative approach for modeling photovoltaic modules without implicit equations," Applied Energy, Elsevier, vol. 202(C), pages 189-198.
    4. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    5. Wee, Jung-Ho & Roh, Jae Hyung & Kim, Jeongin, 2011. "A comparison of solar photovoltaics and molten carbonate fuel cells as commercial power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 697-704, January.
    6. Fathy, Ahmed, 2016. "A reliable methodology based on mine blast optimization algorithm for optimal sizing of hybrid PV-wind-FC system for remote area in Egypt," Renewable Energy, Elsevier, vol. 95(C), pages 367-380.
    7. Martinez, Andrew S. & Brouwer, Jacob & Samuelsen, G. Scott, 2015. "Comparative analysis of SOFC–GT freight locomotive fueled by natural gas and diesel with onboard reformation," Applied Energy, Elsevier, vol. 148(C), pages 421-438.
    8. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    9. Isa, Normazlina Mat & Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2016. "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, Elsevier, vol. 112(C), pages 75-90.
    10. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    11. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    12. Wee, Jung-Ho, 2011. "Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources," Applied Energy, Elsevier, vol. 88(12), pages 4252-4263.
    13. Haghighat Mamaghani, Alireza & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2015. "4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 82(C), pages 650-663.
    14. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    2. Kim, Min Jae & Kim, Tong Seop & Flores, Robert J. & Brouwer, Jack, 2020. "Neural-network-based optimization for economic dispatch of combined heat and power systems," Applied Energy, Elsevier, vol. 265(C).
    3. Razmi, Amir Reza & Soltani, M. & Ardehali, Armin & Gharali, Kobra & Dusseault, M.B. & Nathwani, Jatin, 2021. "Design, thermodynamic, and wind assessments of a compressed air energy storage (CAES) integrated with two adjacent wind farms: A case study at Abhar and Kahak sites, Iran," Energy, Elsevier, vol. 221(C).
    4. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Bartela, Łukasz, 2020. "A hybrid energy storage system using compressed air and hydrogen as the energy carrier," Energy, Elsevier, vol. 196(C).
    6. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
    7. Guo, Jiacheng & Liu, Zhijian & Li, Ying & Wu, Di & Liu, Xuan & Zhang, Shicong & Yang, Xinyan & Ge, Hua & Zhang, Peiwen, 2022. "Thermodynamic performance analyses and optimization design method of a novel distributed energy system coupled with hybrid-energy storage," Renewable Energy, Elsevier, vol. 182(C), pages 1182-1200.
    8. Panda, Ambarish & Mishra, Umakanta & Aviso, Kathleen B., 2020. "Optimizing hybrid power systems with compressed air energy storage," Energy, Elsevier, vol. 205(C).
    9. Hongyang He & Zhigang Lu & Xiaoqiang Guo & Changli Shi & Dongqiang Jia & Chao Chen & Josep M. Guerrero, 2022. "Optimized Control Strategy for Photovoltaic Hydrogen Generation System with Particle Swarm Algorithm," Energies, MDPI, vol. 15(4), pages 1-17, February.
    10. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    2. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    4. Valdivia, Patricio & Barraza, Rodrigo & Saldivia, David & Gacitúa, Leonardo & Barrueto, Aldo & Estay, Danilo, 2020. "Assessment of a Compressed Air Energy Storage System using gas pipelines as storage devices in Chile," Renewable Energy, Elsevier, vol. 147(P1), pages 1251-1265.
    5. Szczęśniak, Arkadiusz & Milewski, Jarosław & Szabłowski, Łukasz & Bujalski, Wojciech & Dybiński, Olaf, 2020. "Dynamic model of a molten carbonate fuel cell 1 kW stack," Energy, Elsevier, vol. 200(C).
    6. Tong, Shuiguang & Cheng, Zhewu & Cong, Feiyun & Tong, Zheming & Zhang, Yidong, 2018. "Developing a grid-connected power optimization strategy for the integration of wind power with low-temperature adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 125(C), pages 73-86.
    7. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    8. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    9. Houssainy, Sammy & Janbozorgi, Mohammad & Ip, Peggy & Kavehpour, Pirouz, 2018. "Thermodynamic analysis of a high temperature hybrid compressed air energy storage (HTH-CAES) system," Renewable Energy, Elsevier, vol. 115(C), pages 1043-1054.
    10. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    11. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    12. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    13. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    14. Li, Yi & Yu, Hao & Tang, Dong & Li, Yi & Zhang, Guijin & Liu, Yaning, 2022. "A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods," Renewable Energy, Elsevier, vol. 187(C), pages 1130-1153.
    15. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    16. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    17. Hasan, Nor Shahida & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Omar, Wan Zaidi Wan & Rosmin, Norzanah, 2016. "Improving power grid performance using parallel connected Compressed Air Energy Storage and wind turbine system," Renewable Energy, Elsevier, vol. 96(PA), pages 498-508.
    18. Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).
    19. Liao, Zhirong & Zhong, Hua & Xu, Chao & Ju, Xing & Ye, Feng & Du, Xiaoze, 2020. "Investigation of a packed bed cold thermal storage in supercritical compressed air energy storage systems," Applied Energy, Elsevier, vol. 269(C).
    20. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:409-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.