IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v95y2016icp367-380.html
   My bibliography  Save this article

A reliable methodology based on mine blast optimization algorithm for optimal sizing of hybrid PV-wind-FC system for remote area in Egypt

Author

Listed:
  • Fathy, Ahmed

Abstract

In this paper, a reliable methodology incorporated mine blast algorithm (MBA) is applied to solve the optimal sizing of a hybrid system consisting of photovoltaic modules, wind turbines and fuel cells (PV/WT/FC) to meet a certain load of remote area in Egypt. The main objective of the optimal sizing process is to achieve the minimum annual cost of the system with load coverage. The sizing process is performed optimally based on real measured data for solar radiation, ambient temperature and wind velocity recorded by the solar radiation and meteorological station located at national research institute of astronomy and geophysics, Helwan city, Egypt. Three other meta-heuristic optimization techniques, particle swarm optimization, cuckoo search and artificial bee colony are applied to solve the problem and the results are compared with those obtained by the proposed methodology. A power management strategy that regulates the power flow between each system component is also presented. The obtained results show that; applying the proposed methodology will save about 24.8% in the annual total cost of the proposed system compared with PSO, 8.956% compared with CS and 11.5576% compared with ABC. The proposed algorithm based on MBA is candidate for solving the presented optimization problem of optimal sizing the hybrid PV/WT/FC system.

Suggested Citation

  • Fathy, Ahmed, 2016. "A reliable methodology based on mine blast optimization algorithm for optimal sizing of hybrid PV-wind-FC system for remote area in Egypt," Renewable Energy, Elsevier, vol. 95(C), pages 367-380.
  • Handle: RePEc:eee:renene:v:95:y:2016:i:c:p:367-380
    DOI: 10.1016/j.renene.2016.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116303342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    2. Janghorban Esfahani, Iman & Yoo, ChangKyoo, 2016. "An optimization algorithm-based pinch analysis and GA for an off-grid batteryless photovoltaic-powered reverse osmosis desalination system," Renewable Energy, Elsevier, vol. 91(C), pages 233-248.
    3. Fathy, Ahmed, 2015. "Reliable and efficient approach for mitigating the shading effect on photovoltaic module based on Modified Artificial Bee Colony algorithm," Renewable Energy, Elsevier, vol. 81(C), pages 78-88.
    4. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2008. "Feasibility analysis of stand-alone renewable energy supply options for a large hotel," Renewable Energy, Elsevier, vol. 33(7), pages 1475-1490.
    5. Hakimi, S.M. & Moghaddas-Tafreshi, S.M., 2009. "Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran," Renewable Energy, Elsevier, vol. 34(7), pages 1855-1862.
    6. Gao, Richie & Gao, Zhiwei, 2016. "Pitch control for wind turbine systems using optimization, estimation and compensation," Renewable Energy, Elsevier, vol. 91(C), pages 501-515.
    7. Khan, M.J. & Iqbal, M.T., 2005. "Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland," Renewable Energy, Elsevier, vol. 30(6), pages 835-854.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alhassan H. Alattar & S. I. Selem & Hamid M. B. Metwally & Ahmed Ibrahim & Raef Aboelsaud & Mohamed A. Tolba & Ali M. El-Rifaie, 2019. "Performance Enhancement of Micro Grid System with SMES Storage System Based on Mine Blast Optimization Algorithm," Energies, MDPI, vol. 12(16), pages 1-23, August.
    2. Hossam A. Gabbar & Muhammad R. Abdussami & Md. Ibrahim Adham, 2020. "Micro Nuclear Reactors: Potential Replacements for Diesel Gensets within Micro Energy Grids," Energies, MDPI, vol. 13(19), pages 1-38, October.
    3. Yuansheng Huang & Lei Yang & Shijian Liu & Guangli Wang, 2018. "Cooperation between Two Micro-Grids Considering Power Exchange: An Optimal Sizing Approach Based on Collaborative Operation," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    4. Kalantari, Hosein & Sasmito, Agus P. & Ghoreishi-Madiseh, Seyed Ali, 2021. "An overview of directions for decarbonization of energy systems in cold climate remote mines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Bartosz Ceran & Agata Orłowska, 2019. "The Impact of Power Source Performance Decrease in a PV/WT/FC Hybrid Power Generation System on the Result of a Multi-Criteria Analysis of Load Distribution," Energies, MDPI, vol. 12(18), pages 1-19, September.
    6. Higinio Sánchez-Sáinz & Carlos-Andrés García-Vázquez & Francisco Llorens Iborra & Luis M. Fernández-Ramírez, 2019. "Methodology for the Optimal Design of a Hybrid Charging Station of Electric and Fuel Cell Vehicles Supplied by Renewable Energies and an Energy Storage System," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    7. Fares, Dalila & Fathi, Mohamed & Mekhilef, Saad, 2022. "Performance evaluation of metaheuristic techniques for optimal sizing of a stand-alone hybrid PV/wind/battery system," Applied Energy, Elsevier, vol. 305(C).
    8. Hosein Kalantari & Seyed Ali Ghoreishi-Madiseh & Agus P. Sasmito, 2020. "Hybrid Renewable Hydrogen Energy Solution for Application in Remote Mines," Energies, MDPI, vol. 13(23), pages 1-22, December.
    9. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Khiareddine, Abla & Ben Salah, Chokri & Rekioua, Djamila & Mimouni, Mohamed Faouzi, 2018. "Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system," Energy, Elsevier, vol. 153(C), pages 743-762.
    11. Zhang, Ge & Shi, Yong & Maleki, Akbar & A. Rosen, Marc, 2020. "Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach," Renewable Energy, Elsevier, vol. 156(C), pages 1203-1214.
    12. Sulaiman Alshammari & Ahmed Fathy, 2022. "Optimum Size of Hybrid Renewable Energy System to Supply the Electrical Loads of the Northeastern Sector in the Kingdom of Saudi Arabia," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    13. Papadopoulos, V. & Knockaert, J. & Develder, C. & Desmet, J., 2019. "Investigating the need for real time measurements in industrial wind power systems combined with battery storage," Applied Energy, Elsevier, vol. 247(C), pages 559-571.
    14. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic simulation, energy and economic comparison between BIPV and BIPVT collectors coupled with micro-wind turbines," Energy, Elsevier, vol. 191(C).
    15. Berbaoui, Brahim & Dehini, Rachid & Hatti, Mustapha, 2020. "An applied methodology for optimal sizing and placement of hybrid power source in remote area of South Algeria," Renewable Energy, Elsevier, vol. 146(C), pages 2785-2796.
    16. Xiaohang Wang & Wentong Chong & Kokhoe Wong & Saihin Lai & Liphuat Saw & Xianbo Xiang & Chin-Tsan Wang, 2019. "Preliminary Techno–Environment–Economic Evaluation of an Innovative Hybrid Renewable Energy Harvester System for Residential Application," Energies, MDPI, vol. 12(8), pages 1-28, April.
    17. Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A. & Nejlaoui, Mohamed, 2021. "Techno-economic evaluation of an off-grid health clinic considering the current and future energy challenges: A rural case study," Renewable Energy, Elsevier, vol. 169(C), pages 34-52.
    18. Liu, Zhijian & Li, Ying & Fan, Guangyao & Wu, Di & Guo, Jiacheng & Jin, Guangya & Zhang, Shicong & Yang, Xinyan, 2022. "Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios," Energy, Elsevier, vol. 247(C).
    19. Toopshekan, Ashkan & Yousefi, Hossein & Astaraei, Fatemeh Razi, 2020. "Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy," Energy, Elsevier, vol. 213(C).
    20. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    21. Nadjemi, O. & Nacer, T. & Hamidat, A. & Salhi, H., 2017. "Optimal hybrid PV/wind energy system sizing: Application of cuckoo search algorithm for Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1352-1365.
    22. Sadeghi, Saber & Askari, Ighball Baniasad, 2019. "Prefeasibility techno-economic assessment of a hybrid power plant with photovoltaic, fuel cell and Compressed Air Energy Storage (CAES)," Energy, Elsevier, vol. 168(C), pages 409-424.
    23. Buonomano, Annamaria & Calise, Francesco & d'Accadia, Massimo Dentice & Vicidomini, Maria, 2018. "A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 155(C), pages 174-189.
    24. Zhang, Weiping & Maleki, Akbar & Rosen, Marc A. & Liu, Jingqing, 2018. "Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage," Energy, Elsevier, vol. 163(C), pages 191-207.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    2. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    3. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    4. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    5. Padrón, Isidro & Avila, Deivis & Marichal, Graciliano N. & Rodríguez, José A., 2019. "Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 221-230.
    6. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations," Renewable Energy, Elsevier, vol. 34(4), pages 1134-1144.
    7. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    8. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    9. Majed A. Alotaibi & Ali M. Eltamaly, 2021. "A Smart Strategy for Sizing of Hybrid Renewable Energy System to Supply Remote Loads in Saudi Arabia," Energies, MDPI, vol. 14(21), pages 1-24, October.
    10. Kalantari, Hosein & Sasmito, Agus P. & Ghoreishi-Madiseh, Seyed Ali, 2021. "An overview of directions for decarbonization of energy systems in cold climate remote mines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Türkay, Belgin Emre & Telli, Ali Yasin, 2011. "Economic analysis of standalone and grid connected hybrid energy systems," Renewable Energy, Elsevier, vol. 36(7), pages 1931-1943.
    12. William E., Lilley & Luke J., Reedman & Liam D., Wagner & Colin F., Alie & Anthony R., Szatow, 2012. "An economic evaluation of the potential for distributed energy in Australia," Energy Policy, Elsevier, vol. 51(C), pages 277-289.
    13. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    14. Fadaee, M. & Radzi, M.A.M., 2012. "Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3364-3369.
    15. Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A., 2016. "A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Namin, Iran," Energy, Elsevier, vol. 98(C), pages 168-180.
    16. Ali, Liaqat & Shahnia, Farhad, 2017. "Determination of an economically-suitable and sustainable standalone power system for an off-grid town in Western Australia," Renewable Energy, Elsevier, vol. 106(C), pages 243-254.
    17. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    18. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    19. Clarke, Daniel P. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2015. "Multi-objective optimisation of renewable hybrid energy systems with desalination," Energy, Elsevier, vol. 88(C), pages 457-468.
    20. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:95:y:2016:i:c:p:367-380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.