IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v152y2018icp682-693.html
   My bibliography  Save this article

Optimization and part-load performance analysis of MCFC/ST hybrid power system

Author

Listed:
  • Duan, Liqiang
  • Lu, Hao
  • Yuan, Mingye
  • Lv, Zhipeng

Abstract

Based on a benchmark hybrid power system of molten carbonate fuel cell(MCFC) integrated with the steam turbine(ST) bottom cycle system, a new MCFC/ST hybrid power system is proposed in this paper. The detailed thermodynamic models of the overall system are established. The effects of the key parameters on the new system performance are deeply studied. The exergy analysis method is used to reveal the theoretical root of performance advantage of new system. The off-design performance of the new system is analyzed. In order to improve the off-design performance of the new system, two control modes are proposed to make the fuel cell operate at 650 °C. The results indicate that the total exergy loss of the new system is obviously reduced compared with the benchmark system. The net efficiency of the new system reaches the highest when the carbon-to-steam ratio is 2.5, CO2 utilization rate is 75%, fuel utilization rate is 85% and the current density is 1500 A/m2. The fuel cell is more efficient at part load than at the design point and the net hybrid power system efficiency increases in the first control mode and almost remains unchanged in the second control mode with the decrease of the load.

Suggested Citation

  • Duan, Liqiang & Lu, Hao & Yuan, Mingye & Lv, Zhipeng, 2018. "Optimization and part-load performance analysis of MCFC/ST hybrid power system," Energy, Elsevier, vol. 152(C), pages 682-693.
  • Handle: RePEc:eee:energy:v:152:y:2018:i:c:p:682-693
    DOI: 10.1016/j.energy.2018.03.178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218305875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Liqiang & Xia, Kun & Feng, Tao & Jia, Shilun & Bian, Jing, 2016. "Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system," Energy, Elsevier, vol. 117(P2), pages 578-589.
    2. Silveira, José Luz & Martins Leal, Elisângela & Ragonha, Luiz F, 2001. "Analysis of a molten carbonate fuel cell: cogeneration to produce electricity and cold water," Energy, Elsevier, vol. 26(10), pages 891-904.
    3. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari, 2017. "Conceptual and basic design of a novel integrated cogeneration power plant energy system," Energy, Elsevier, vol. 127(C), pages 516-533.
    4. Duan, Liqiang & Yue, Long & Feng, Tao & Lu, Hao & Bian, Jing, 2016. "Study on a novel pressurized MCFC hybrid system with CO2 capture," Energy, Elsevier, vol. 109(C), pages 737-750.
    5. Duan, Liqiang & Huang, Kexin & Zhang, Xiaoyuan & Yang, Yongping, 2013. "Comparison study on different SOFC hybrid systems with zero-CO2 emission," Energy, Elsevier, vol. 58(C), pages 66-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szczęśniak, Arkadiusz & Milewski, Jarosław & Szabłowski, Łukasz & Bujalski, Wojciech & Dybiński, Olaf, 2020. "Dynamic model of a molten carbonate fuel cell 1 kW stack," Energy, Elsevier, vol. 200(C).
    2. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    3. Li, Xiang & Wu, Junsong & Zhu, Xinyu & Liang, Huixing, 2022. "Agricultural waste-to-energy concerning a biofuel-fed molten carbonate fuel cell toward a novel trigeneration scheme; exergoeconomic/sustainability study and multi-objective optimization," Renewable Energy, Elsevier, vol. 199(C), pages 1189-1209.
    4. Sadeghi, Saber & Askari, Ighball Baniasad, 2019. "Prefeasibility techno-economic assessment of a hybrid power plant with photovoltaic, fuel cell and Compressed Air Energy Storage (CAES)," Energy, Elsevier, vol. 168(C), pages 409-424.
    5. Zhang, Yao & Salem, Mohamed & Elmasry, Yasser & Hoang, Anh Tuan & Galal, Ahmed M. & Pham Nguyen, Dang Khoa & Wae-hayee, Makatar, 2022. "Triple-objective optimization and electrochemical/technical/environmental study of biomass gasification process for a novel high-temperature fuel cell/electrolyzer/desalination scheme," Renewable Energy, Elsevier, vol. 201(P1), pages 379-399.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
    2. Duan, Liqiang & Yue, Long & Feng, Tao & Lu, Hao & Bian, Jing, 2016. "Study on a novel pressurized MCFC hybrid system with CO2 capture," Energy, Elsevier, vol. 109(C), pages 737-750.
    3. Ahn, Ji Ho & Seo, Min Hyung & Kim, Tong Seop, 2021. "Efficiency maximization of a quadruple power generation system with zero carbon emission," Energy, Elsevier, vol. 226(C).
    4. Szczęśniak, Arkadiusz & Milewski, Jarosław & Szabłowski, Łukasz & Bujalski, Wojciech & Dybiński, Olaf, 2020. "Dynamic model of a molten carbonate fuel cell 1 kW stack," Energy, Elsevier, vol. 200(C).
    5. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    6. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    7. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    8. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    9. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Towards net-zero emission cement and power production using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 306(PB).
    10. Wu, Yunyun & Lou, Jiahui & Wang, Yihan & Tian, Zhenyu & Yang, Lingzhi & Hao, Yong & Liu, Guohua & Chen, Heng, 2024. "Performance evaluation of a novel photovoltaic-thermochemical and solid oxide fuel cell-based distributed energy system with CO2 capture," Applied Energy, Elsevier, vol. 364(C).
    11. Chen, Shiyi & Zhou, Nan & Wu, Mudi & Chen, Shubo & Xiang, Wenguo, 2022. "Integration of molten carbonate fuel cell and chemical looping air separation for high-efficient power generation and CO2 capture," Energy, Elsevier, vol. 254(PA).
    12. Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
    13. Haghighat Mamaghani, Alireza & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2015. "4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 82(C), pages 650-663.
    14. Yong Zhu & Rongrong Zhai & Yongping Yang & Miguel Angel Reyes-Belmonte, 2017. "Techno-Economic Analysis of Solar Tower Aided Coal-Fired Power Generation System," Energies, MDPI, vol. 10(9), pages 1-26, September.
    15. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    16. Detchusananard, Thanaphorn & Im-orb, Karittha & Maréchal, François & Arpornwichanop, Amornchai, 2020. "Analysis of the sorption-enhanced chemical looping biomass gasification process: Performance assessment and optimization through design of experiment approach," Energy, Elsevier, vol. 207(C).
    17. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari & Mousavi, Seyed Ali, 2019. "Evaluation of an optimal integrated design multi-fuel multi-product electrical power plant by energy and exergy analyses," Energy, Elsevier, vol. 169(C), pages 61-78.
    18. Yi, Qun & Zhao, Yingjie & Huang, Yi & Wei, Guoqiang & Hao, Yanhong & Feng, Jie & Mohamed, Usama & Pourkashanian, Mohamed & Nimmo, William & Li, Wenying, 2018. "Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom," Applied Energy, Elsevier, vol. 225(C), pages 258-272.
    19. Mehr, A.S. & Lanzini, A. & Santarelli, M. & Rosen, Marc A., 2021. "Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches," Energy, Elsevier, vol. 228(C).
    20. Cheng, Tianliang & Jiang, Jianhua & Wu, Xiaodong & Li, Xi & Xu, Mengxue & Deng, Zhonghua & Li, Jian, 2019. "Application oriented multiple-objective optimization, analysis and comparison of solid oxide fuel cell systems with different configurations," Applied Energy, Elsevier, vol. 235(C), pages 914-929.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:152:y:2018:i:c:p:682-693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.