IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224036740.html
   My bibliography  Save this article

An innovative hybrid system for electricity and freshwater cogeneration: Integrating high-temperature PEM fuel cells with hydrophilic modified tubular distillers

Author

Listed:
  • Wang, Han
  • Kuang, Min
  • Li, Jianming
  • Zhang, Houcheng

Abstract

Synergizing high-temperature proton exchange membrane fuel cells (HT-PEMFCs) and hydrophilic modified tubular distillers (HMTDs) presents a promising solution to the challenges of electricity and freshwater scarcity, however, the system integration, performance features, and optimization strategies remain unknown. To address these issues, a system configuration for this concept is structured for the first time. Accordingly, a comprehensive mathematical model, grounded in thermodynamic and electrochemical principles, is developed to predict the performance by incorporating key irreversible losses. Numerical simulations predict that, compared to a standalone HT-PEMFC operating at 453 K, the cogeneration system increases maximum power density by 115.77 % and improves energy and exergy efficiencies by 60.73 % and 36.44 %, respectively, demonstrating the significant potential of this technology. Parametric studies are conducted to understand how the system's performance depends on various structural and operational parameters, including leakage current density, phosphoric acid doping, relative humidity, operating temperature, membrane thickness, unlocking avenues for performance optimization. Local sensitivity analysis further prioritizes these parameters for performance regulation, identifying phosphoric acid doping level as the most sensitive parameter while leakage current density as the least sensitive, providing useful strategies for performance regulation. These findings provide valuable insights for designing and operating high-performance hybrid systems.

Suggested Citation

  • Wang, Han & Kuang, Min & Li, Jianming & Zhang, Houcheng, 2024. "An innovative hybrid system for electricity and freshwater cogeneration: Integrating high-temperature PEM fuel cells with hydrophilic modified tubular distillers," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036740
    DOI: 10.1016/j.energy.2024.133896
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224036740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Zhang & Liu, Qibin & Lei, Jing & Jin, Hongguang, 2018. "Investigation on the mid-temperature solar thermochemical power generation system with methanol decomposition," Applied Energy, Elsevier, vol. 217(C), pages 56-65.
    2. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell," Energy, Elsevier, vol. 93(P2), pages 2079-2086.
    3. Ma, Zhenxi & Cai, Liang & Sun, Li & Zhang, Xiao & Zhang, Xiaosong, 2024. "Thermodynamics and flexibility assessment on integrated high-temperature PEMFC and double-effect absorption heating/cooling cogeneration cycle," Energy, Elsevier, vol. 290(C).
    4. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    5. Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
    6. Liu, Zhen & Saydaliev, Hayot Berk & Lan, Jing & Ali, Sajid & Anser, Muhammad Khalid, 2022. "Assessing the effectiveness of biomass energy in mitigating CO2 emissions: Evidence from Top-10 biomass energy consumer countries," Renewable Energy, Elsevier, vol. 191(C), pages 842-851.
    7. Zhang, Houcheng & Li, Jiarui & Xue, Yejian & Grgur, Branimir N. & Li, Jianming, 2024. "Performance prediction and regulation of a tubular solid oxide fuel cell and hydrophilic modified tubular still hybrid system for electricity and freshwater cogeneration," Energy, Elsevier, vol. 289(C).
    8. Yee Mah, Angel Xin & Ho, Wai Shin & Hassim, Mimi H. & Hashim, Haslenda & Liew, Peng Yen & Muis, Zarina Ab, 2021. "Targeting and scheduling of standalone renewable energy system with liquid organic hydrogen carrier as energy storage," Energy, Elsevier, vol. 218(C).
    9. Dimitrova, Zlatina & Nader, Wissam Bou, 2022. "PEM fuel cell as an auxiliary power unit for range extended hybrid electric vehicles," Energy, Elsevier, vol. 239(PA).
    10. Chen, Huicui & Liu, Zhao & Ye, Xichen & Yi, Liu & Xu, Sichen & Zhang, Tong, 2022. "Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system," Energy, Elsevier, vol. 238(PC).
    11. Guo, Xinru & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin & Ni, Meng & Liao, Tianjun, 2021. "Energetic, exergetic and ecological evaluations of a hybrid system based on a phosphoric acid fuel cell and an organic Rankine cycle," Energy, Elsevier, vol. 217(C).
    12. Zhang, Caizhi & Liu, Zhitao & Zhang, Xiongwen & Chan, Siew Hwa & Wang, Youyi, 2016. "Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell – Modelling and fuzzy control of purging process," Energy, Elsevier, vol. 95(C), pages 425-432.
    13. Zhang, Xin & Li, Jingwen & Xiong, Yi & Ang, Yee Sin, 2022. "Efficient harvesting of low-grade waste heat from proton exchange membrane fuel cells via thermoradiative power devices," Energy, Elsevier, vol. 258(C).
    14. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
    15. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2017. "Performance of a hybrid system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator," Energy, Elsevier, vol. 141(C), pages 2397-2407.
    16. Ma, Zhenxi & Zhang, Naiji & Wu, Wei & Sun, Li & Zhang, Xiaosong & Cai, Liang, 2024. "Carbone-neutral oriented methanol-reforming HT-PEMFC cogeneration based on absorption power refrigeration cycle," Energy, Elsevier, vol. 308(C).
    17. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2015. "Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration," Applied Energy, Elsevier, vol. 138(C), pages 685-694.
    18. Li, Longquan & Liu, Zhiqiang & Deng, Chengwei & Xie, Nan & Ren, Jingzheng & Sun, Yi & Xiao, Zhenyu & Lei, Kun & Yang, Sheng, 2022. "Thermodynamic and exergoeconomic analyses of a vehicular fuel cell power system with waste heat recovery for cabin heating and reactants preheating," Energy, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    2. Guo, Xinru & Zhang, Houcheng, 2020. "Performance analyses of a combined system consisting of high-temperature polymer electrolyte membrane fuel cells and thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 193(C).
    3. Zhang, Xin & Li, Jingwen & Xiong, Yi & Ang, Yee Sin, 2022. "Efficient harvesting of low-grade waste heat from proton exchange membrane fuel cells via thermoradiative power devices," Energy, Elsevier, vol. 258(C).
    4. Li, Jie & Li, Jianming & Xiao, Liusheng & Zhang, Houcheng, 2024. "Unlocking the potentials using humidifier-dehumidifier for proton exchange membrane fuel cell waste heat recovery," Renewable Energy, Elsevier, vol. 237(PA).
    5. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    6. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    7. Li, Jie & Li, Jianming & Xiao, Liusheng & Zhao, Jiapei & Kuang, Min & Zhang, Houcheng, 2024. "Performance prediction and enhancement strategy of a new proton exchange membrane fuel cell-hydrophilic modified tubular still hybrid system," Renewable Energy, Elsevier, vol. 237(PC).
    8. Lu, Xinyu & Du, Banghua & Zhu, Wenchao & Yang, Yang & Xie, Changjun & Tu, Zhengkai & Zhao, Bo & Zhang, Leiqi & Wang, Jianqiang & Yang, Zheng, 2024. "Multi-criteria assessment of an auxiliary energy system for desalination plant based on PEMFC-ORC combined heat and power," Energy, Elsevier, vol. 290(C).
    9. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
    10. Wang, Renkang & Li, Kai & Cao, Jishen & Yang, Haiyu & Tang, Hao, 2024. "Air supply subsystem efficiency optimization for fuel cell power system with layered control method," Renewable Energy, Elsevier, vol. 235(C).
    11. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    12. Wang, Mingli & Ruan, Jiafen & Zhang, Jian & Jiang, Yefan & Gao, Fei & Zhang, Xin & Rahman, Ehsanur & Guo, Juncheng, 2024. "Modeling, thermodynamic performance analysis, and parameter optimization of a hybrid power generation system coupling thermogalvanic cells with alkaline fuel cells," Energy, Elsevier, vol. 292(C).
    13. Jia, Fei & Tian, Xiaodi & Liu, Fengfeng & Ye, Junjie & Yang, Chengpeng, 2023. "Oxidant starvation under various operating conditions on local and transient performance of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 331(C).
    14. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    15. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    16. Minjing Yang & Cosimo Magazzino & Abraham Ayobamiji Awosusi & Navzodbek Abdulloev, 2024. "Determinants of Load capacity factor in BRICS countries: A panel data analysis," Natural Resources Forum, Blackwell Publishing, vol. 48(2), pages 525-548, May.
    17. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    18. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    19. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    20. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.