IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v217y2021ics0360544220324725.html
   My bibliography  Save this article

Energetic, exergetic and ecological evaluations of a hybrid system based on a phosphoric acid fuel cell and an organic Rankine cycle

Author

Listed:
  • Guo, Xinru
  • Zhang, Houcheng
  • Hu, Ziyang
  • Hou, Shujin
  • Ni, Meng
  • Liao, Tianjun

Abstract

The waste heat from phosphoric acid fuel cells is available and suitable for additional power generation by means of organic Rankine cycles. A new hybrid system model is proposed by integrating a phosphoric acid fuel cell with an organic Rankine cycle, where the organic Rankine cycle model is modified in absence of complex working fluid properties. The energetic, exergetic and ecological performances for the phosphoric acid fuel cell-organic Rankine cycle hybrid system are evaluated based on thermodynamic laws and steady-state mathematical models. Numerical results show that maximum power output density and maximum ecological objective function density of the hybrid system are 6036.7 W m−2 (at 9470.8 A m−2) and 2913.1 W m−2 (at 7050.8 A m−2), which are increased about 25.2% and 57.5% by comparing to that of the single phosphoric acid fuel cell system, respectively. Optimum working regions of various performance parameters are determined considering the trade-offs between multiple optimization criteria. Furthermore, the impacts of the operating temperature, exchange current density, electrolyte thickness and pinch temperature ratio on the hybrid system performance are analyzed. The derived results may offer some help for understanding the energetic, exergetic and ecological performances of such an actual cogeneration system.

Suggested Citation

  • Guo, Xinru & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin & Ni, Meng & Liao, Tianjun, 2021. "Energetic, exergetic and ecological evaluations of a hybrid system based on a phosphoric acid fuel cell and an organic Rankine cycle," Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324725
    DOI: 10.1016/j.energy.2020.119365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220324725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Chia-Lien & Chang, Cheng-Ping & Guo, Yi-Hsuan & Yeh, Tsung-Kuang & Su, Yu-Chuan & Wang, Pen-Cheng & Hsueh, Kan-Lin & Tseng, Fan-Gang, 2019. "High-performance and low-leakage phosphoric acid fuel cell with synergic composite membrane stacking of micro glass microfiber and nano PTFE," Renewable Energy, Elsevier, vol. 134(C), pages 982-988.
    2. Larjola, J., 1995. "Electricity from industrial waste heat using high-speed organic Rankine cycle (ORC)," International Journal of Production Economics, Elsevier, vol. 41(1-3), pages 227-235, October.
    3. Pierobon, Leonardo & Rokni, Masoud & Larsen, Ulrik & Haglind, Fredrik, 2013. "Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle," Renewable Energy, Elsevier, vol. 60(C), pages 226-234.
    4. Wang, Hsueh-Sheng & Chang, Cheng-Ping & Huang, Yuh-Jeen & Su, Yu-Chuan & Tseng, Fan-Gang, 2017. "A high-yield and ultra-low-temperature methanol reformer integratable with phosphoric acid fuel cell (PAFC)," Energy, Elsevier, vol. 133(C), pages 1142-1152.
    5. Tianqi He & Rongqi Shi & Jie Peng & Weilin Zhuge & Yangjun Zhang, 2016. "Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle," Energies, MDPI, vol. 9(4), pages 1-15, April.
    6. Madhawa Hettiarachchi, H.D. & Golubovic, Mihajlo & Worek, William M. & Ikegami, Yasuyuki, 2007. "Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources," Energy, Elsevier, vol. 32(9), pages 1698-1706.
    7. Guo, Xinru & Zhang, Houcheng & Yuan, Jinliang & Wang, Jiatang & Zhao, Jiapei & Wang, Fu & Miao, He & Hou, Shujin, 2019. "Performance assessment of a combined system consisting of a high-temperature polymer electrolyte membrane fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 762-770.
    8. Zhang, Houcheng & Xu, Haoran & Chen, Bin & Dong, Feifei & Ni, Meng, 2017. "Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells," Energy, Elsevier, vol. 132(C), pages 280-288.
    9. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2016. "Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system," Energy, Elsevier, vol. 113(C), pages 1062-1070.
    10. Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
    11. Moradi, Mehrdad & Mehrpooya, Mehdi, 2017. "Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector, combined cooling, heating and power (CCHP) system used for a large commercial tower," Energy, Elsevier, vol. 130(C), pages 530-543.
    12. Perna, Alessandra & Minutillo, Mariagiovanna & Jannelli, Elio, 2015. "Investigations on an advanced power system based on a high temperature polymer electrolyte membrane fuel cell and an organic Rankine cycle for heating and power production," Energy, Elsevier, vol. 88(C), pages 874-884.
    13. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    14. Haghighat Mamaghani, Alireza & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2015. "4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 82(C), pages 650-663.
    15. Lee, Won Y. & Kim, Sang S. & Won, Seung H., 1990. "Finite-time optimizations of a heat engine," Energy, Elsevier, vol. 15(11), pages 979-985.
    16. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xin & Li, Jingwen & Xiong, Yi & Ang, Yee Sin, 2022. "Efficient harvesting of low-grade waste heat from proton exchange membrane fuel cells via thermoradiative power devices," Energy, Elsevier, vol. 258(C).
    2. Rezk, Hegazy & Ferahtia, Seydali & Djeroui, Ali & Chouder, Aissa & Houari, Azeddine & Machmoum, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer," Energy, Elsevier, vol. 239(PC).
    3. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Li, Yangyang, 2021. "An alkaline fuel cell/direct contact membrane distillation hybrid system for cogenerating electricity and freshwater," Energy, Elsevier, vol. 225(C).
    4. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonardo Pierobon & Tuong-Van Nguyen & Andrea Mazzucco & Ulrik Larsen & Fredrik Haglind, 2014. "Part-Load Performance of aWet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator," Energies, MDPI, vol. 7(12), pages 1-23, December.
    2. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    3. Chen, Wei & Chenbin, Xu & Wu, Haibo & Li, Zoulu & Zhang, Bin & Yan, He, 2021. "Thermal analysis and optimization of combined cold and power system with integrated phosphoric acid fuel cell and two-stage compression–absorption refrigerator at low evaporation temperature," Energy, Elsevier, vol. 216(C).
    4. Eyidogan, Muharrem & Canka Kilic, Fatma & Kaya, Durmus & Coban, Volkan & Cagman, Selman, 2016. "Investigation of Organic Rankine Cycle (ORC) technologies in Turkey from the technical and economic point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 885-895.
    5. Roy, J.P. & Misra, Ashok, 2012. "Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery," Energy, Elsevier, vol. 39(1), pages 227-235.
    6. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    7. Lee, Yuh-Ren & Kuo, Chi-Ron & Wang, Chi-Chuan, 2012. "Transient response of a 50 kW organic Rankine cycle system," Energy, Elsevier, vol. 48(1), pages 532-538.
    8. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    9. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    10. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2017. "Performance of a hybrid system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator," Energy, Elsevier, vol. 141(C), pages 2397-2407.
    11. Lai, Ngoc Anh & Fischer, Johann, 2012. "Efficiencies of power flash cycles," Energy, Elsevier, vol. 44(1), pages 1017-1027.
    12. Guo, Xinru & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Wang, Fu & Miao, He & Yuan, Jinliang & Hou, Shujin, 2020. "A new hybrid system composed of high-temperature proton exchange fuel cell and two-stage thermoelectric generator with Thomson effect: Energy and exergy analyses," Energy, Elsevier, vol. 195(C).
    13. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    14. Hyung-Seok Park & Hong-Jun Heo & Bum-Seog Choi & Kyung Chun Kim & Jang-Mok Kim, 2019. "Speed Control for Turbine-Generator of ORC Power Generation System and Experimental Implementation," Energies, MDPI, vol. 12(2), pages 1-13, January.
    15. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
    16. Fernández, F.J. & Prieto, M.M. & Suárez, I., 2011. "Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids," Energy, Elsevier, vol. 36(8), pages 5239-5249.
    17. Guo, Xinru & Zhang, Houcheng & Yuan, Jinliang & Wang, Jiatang & Zhao, Jiapei & Wang, Fu & Miao, He & Hou, Shujin, 2019. "Performance assessment of a combined system consisting of a high-temperature polymer electrolyte membrane fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 762-770.
    18. Kang, Seok Hun, 2012. "Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid," Energy, Elsevier, vol. 41(1), pages 514-524.
    19. Peter Collings & Andrew Mckeown & Enhua Wang & Zhibin Yu, 2019. "Experimental Investigation of a Small-Scale ORC Power Plant Using a Positive Displacement Expander with and without a Regenerator," Energies, MDPI, vol. 12(8), pages 1-16, April.
    20. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.