IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp1142-1152.html
   My bibliography  Save this article

A high-yield and ultra-low-temperature methanol reformer integratable with phosphoric acid fuel cell (PAFC)

Author

Listed:
  • Wang, Hsueh-Sheng
  • Chang, Cheng-Ping
  • Huang, Yuh-Jeen
  • Su, Yu-Chuan
  • Tseng, Fan-Gang

Abstract

To provide sufficient hydrogen at lower temperature (<180 °C) to small phosphoric acid fuel cells (PAFC), an ultra-low-temperature (130–180 °C) methanol reformer with high hydrogen yield (5.9 × 10−4 mol/min, or 644.8 ml/min/cm3, at 180 °C) is developed and integrated with a high performance PAFC. Compared to the previous reformer [26], the performance of the current reformer can produce 39.4 folds more hydrogen throughput at a much lower temperature (180 °C, decreased from 225 °C) with compatible methanol conversion rate (83%), owing to the synergic effects from optimizing the catalyst amount and reactive area, enlarging the depth of the channel, and increasing the concentration and flow rate of reactant fuel. Commendably, 79% methanol conversion rate and 5.2 × 10−4 mol/min hydrogen production yield can also be obtained at much lower operation temperature of 130 °C. In integration testing, a 132 mW/cm2 power density is generated by directly employing the reformed gas (41.6% H2, 28.1%H2O, 28.5% CO2, and 1.8% CO) as the fuel to a small PAFC, a roughly 45.8% power generation efficiency is obtained when compared to that by injecting pure Hydrogen gas into the same PAFC, demonstrating a compatible performance when considering hydrogen of only 41.6% purity is provided.

Suggested Citation

  • Wang, Hsueh-Sheng & Chang, Cheng-Ping & Huang, Yuh-Jeen & Su, Yu-Chuan & Tseng, Fan-Gang, 2017. "A high-yield and ultra-low-temperature methanol reformer integratable with phosphoric acid fuel cell (PAFC)," Energy, Elsevier, vol. 133(C), pages 1142-1152.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:1142-1152
    DOI: 10.1016/j.energy.2017.05.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217308988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Gang & Zheng, Hualin & Zhang, Jun & Siong Chin, Cheng & Xu, Xinhai & Zhou, Weijiang & Zhang, Caizhi, 2023. "Analyzing characteristic and modeling of high-temperature proton exchange membrane fuel cells with CO poisoning effect," Energy, Elsevier, vol. 282(C).
    2. Zhang, Yidian & Guo, Shaopeng & Tian, Zhenyu & Zhao, Yawen & Hao, Yong, 2019. "Experimental investigation of steam reforming of methanol over La2CuO4/CuZnAl-oxides nanocatalysts," Applied Energy, Elsevier, vol. 254(C).
    3. Guo, Xinru & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin & Ni, Meng & Liao, Tianjun, 2021. "Energetic, exergetic and ecological evaluations of a hybrid system based on a phosphoric acid fuel cell and an organic Rankine cycle," Energy, Elsevier, vol. 217(C).
    4. Noor H. Jawad & Ali Amer Yahya & Ali R. Al-Shathr & Hussein G. Salih & Khalid T. Rashid & Saad Al-Saadi & Adnan A. AbdulRazak & Issam K. Salih & Adel Zrelli & Qusay F. Alsalhy, 2022. "Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review," Sustainability, MDPI, vol. 14(21), pages 1-48, November.
    5. Tie-Qing Zhang & Seunghun Jung & Young-Bae Kim, 2022. "Hydrogen Production System through Dimethyl Ether Autothermal Reforming, Based on Model Predictive Control," Energies, MDPI, vol. 15(23), pages 1-16, November.
    6. Chen, Wei & Chenbin, Xu & Wu, Haibo & Li, Zoulu & Zhang, Bin & Yan, He, 2021. "Thermal analysis and optimization of combined cold and power system with integrated phosphoric acid fuel cell and two-stage compression–absorption refrigerator at low evaporation temperature," Energy, Elsevier, vol. 216(C).
    7. Perng, Shiang-Wuu & Wu, Horng-Wen, 2023. "Enhancement of proton exchange membrane fuel cell net electric power and methanol-reforming performance by vein channel carved into the reactor plate," Energy, Elsevier, vol. 281(C).
    8. Chang, Cheng-Ping & Wu, Yen-Chih & Chen, Wei-Yen & Pan, Chin & Su, Yu-Chuan & Huang, Yuh-Jeen & Tseng, Fan-Gang, 2020. "A hybrid phosphorus-acid fuel cell system incorporated with oxidative steam reforming of methanol (OSRM) reformer," Renewable Energy, Elsevier, vol. 153(C), pages 530-538.
    9. Pan, Pengcheng & Sun, Yuwei & Yuan, Chengqing & Yan, Xinping & Tang, Xujing, 2021. "Research progress on ship power systems integrated with new energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:1142-1152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.