IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14653-d965822.html
   My bibliography  Save this article

Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review

Author

Listed:
  • Noor H. Jawad

    (Membrane Technology Research Unit, Chemical Engineering Department, University of Technology—Iraq, Alsena’a Street No. 52, Baghdad 10066, Iraq)

  • Ali Amer Yahya

    (Membrane Technology Research Unit, Chemical Engineering Department, University of Technology—Iraq, Alsena’a Street No. 52, Baghdad 10066, Iraq)

  • Ali R. Al-Shathr

    (Membrane Technology Research Unit, Chemical Engineering Department, University of Technology—Iraq, Alsena’a Street No. 52, Baghdad 10066, Iraq)

  • Hussein G. Salih

    (Membrane Technology Research Unit, Chemical Engineering Department, University of Technology—Iraq, Alsena’a Street No. 52, Baghdad 10066, Iraq)

  • Khalid T. Rashid

    (Membrane Technology Research Unit, Chemical Engineering Department, University of Technology—Iraq, Alsena’a Street No. 52, Baghdad 10066, Iraq)

  • Saad Al-Saadi

    (Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia)

  • Adnan A. AbdulRazak

    (Membrane Technology Research Unit, Chemical Engineering Department, University of Technology—Iraq, Alsena’a Street No. 52, Baghdad 10066, Iraq)

  • Issam K. Salih

    (Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq)

  • Adel Zrelli

    (Higher Institute of Applied Science and Technology of Gabes, University of Gabes, Gabes 6072, Tunisia)

  • Qusay F. Alsalhy

    (Membrane Technology Research Unit, Chemical Engineering Department, University of Technology—Iraq, Alsena’a Street No. 52, Baghdad 10066, Iraq)

Abstract

Fuel cells have lately received growing attention since they allow the use of non-precious metals as catalysts, which reduce the cost per kilowatt of power in fuel cell devices to some extent. Until recent years, the major barrier in the development of fuel cells was the obtainability of highly conductive anion exchange membranes (AEMs). On the other hand, improvements show that newly enhanced anion exchange membranes have already reached high conductivity levels, leading to the suitable presentation of the cell. Currently, an increasing number of studies have described the performance results of fuel cells. Much of the literature reporting cell performance is founded on hydrogen‒anion exchange membrane fuel cells (AEMFCs), though a growing number of studies have also reported utilizing fuels other than hydrogen—such as alcohols, non-alcohol C-based fuels, and N-based fuels. This article reviews the types, performance, utilized membranes, and operational conditions of anion exchange membranes for fuel cells.

Suggested Citation

  • Noor H. Jawad & Ali Amer Yahya & Ali R. Al-Shathr & Hussein G. Salih & Khalid T. Rashid & Saad Al-Saadi & Adnan A. AbdulRazak & Issam K. Salih & Adel Zrelli & Qusay F. Alsalhy, 2022. "Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review," Sustainability, MDPI, vol. 14(21), pages 1-48, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14653-:d:965822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14653/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14653/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominik Marx & Mark E. Tuckerman & Jürg Hutter & Michele Parrinello, 1999. "The nature of the hydrated excess proton in water," Nature, Nature, vol. 397(6720), pages 601-604, February.
    2. Cocco, D. & Tola, V., 2009. "Externally reformed solid oxide fuel cell–micro-gas turbine (SOFC–MGT) hybrid systems fueled by methanol and di-methyl-ether (DME)," Energy, Elsevier, vol. 34(12), pages 2124-2130.
    3. Kyungho Hwang & Jun-Hyun Kim & Sung-Yul Kim & Hongsik Byun, 2014. "Preparation of Polybenzimidazole-Based Membranes and Their Potential Applications in the Fuel Cell System," Energies, MDPI, vol. 7(3), pages 1-12, March.
    4. Yang, Wonseok & Cha, Dowon & Kim, Yongchan, 2019. "Effects of flow direction on dynamic response and stability of nonhumidification PEM fuel cell," Energy, Elsevier, vol. 185(C), pages 386-395.
    5. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    6. Wang, Hsueh-Sheng & Chang, Cheng-Ping & Huang, Yuh-Jeen & Su, Yu-Chuan & Tseng, Fan-Gang, 2017. "A high-yield and ultra-low-temperature methanol reformer integratable with phosphoric acid fuel cell (PAFC)," Energy, Elsevier, vol. 133(C), pages 1142-1152.
    7. Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
    8. Mengbo Ji & Zidong Wei, 2009. "A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 2(4), pages 1-50, November.
    9. Ozen, Dilek Nur & Timurkutluk, Bora & Altinisik, Kemal, 2016. "Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1298-1306.
    10. Hui Xing & Charles Stuart & Stephen Spence & Hua Chen, 2021. "Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    11. Zamel, Nada & Litovsky, Efim & Shakhshir, Saher & Li, Xianguo & Kleiman, Jacob, 2011. "Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of −20°C to +120°C," Applied Energy, Elsevier, vol. 88(9), pages 3042-3050.
    12. Deng, Hao & Wang, Dawei & Wang, Renfang & Xie, Xu & Yin, Yan & Du, Qing & Jiao, Kui, 2016. "Effect of electrode design and operating condition on performance of hydrogen alkaline membrane fuel cell," Applied Energy, Elsevier, vol. 183(C), pages 1272-1278.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Fathy & Abdulmohsen Alanazi, 2023. "An Efficient White Shark Optimizer for Enhancing the Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    2. Jinghua Zhou & Qi Zhang & Jin Li, 2023. "Topology and Control of Fuel Cell Generation Converters," Energies, MDPI, vol. 16(11), pages 1-17, June.
    3. Igor Tatarewicz & Sławomir Skwierz & Michał Lewarski & Robert Jeszke & Maciej Pyrka & Monika Sekuła, 2023. "Mapping the Future of Green Hydrogen: Integrated Analysis of Poland and the EU’s Development Pathways to 2050," Energies, MDPI, vol. 16(17), pages 1-27, August.
    4. Guangjin Pan & Yunpeng Bai & Huihui Song & Yanbin Qu & Yang Wang & Xiaofei Wang, 2023. "Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies," Energies, MDPI, vol. 16(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Derbeli & Cristian Napole & Oscar Barambones, 2021. "Machine Learning Approach for Modeling and Control of a Commercial Heliocentris FC50 PEM Fuel Cell System," Mathematics, MDPI, vol. 9(17), pages 1-18, August.
    2. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    3. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    4. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    5. Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
    6. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    7. Wu, Horng-Wen & Ku, Hui-Wen, 2011. "The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method," Applied Energy, Elsevier, vol. 88(12), pages 4879-4890.
    8. Wong, A.K.C. & Ge, N. & Shrestha, P. & Liu, H. & Fahy, K. & Bazylak, A., 2019. "Polytetrafluoroethylene content in standalone microporous layers: Tradeoff between membrane hydration and mass transport losses in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 240(C), pages 549-560.
    9. Fadzillah, D.M. & Rosli, M.I. & Talib, M.Z.M. & Kamarudin, S.K. & Daud, W.R.W., 2017. "Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1001-1009.
    10. Dutta, Kingshuk & Das, Suparna & Kumar, Piyush & Kundu, Patit Paban, 2014. "Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: A preliminary study based on blends of partially sulfonated polymers polyaniline and PVdF-co-HFP," Applied Energy, Elsevier, vol. 118(C), pages 183-191.
    11. Marco Mariani & Andrea Basso Peressut & Saverio Latorrata & Riccardo Balzarotti & Maurizio Sansotera & Giovanni Dotelli, 2021. "The Role of Fluorinated Polymers in the Water Management of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 14(24), pages 1-17, December.
    12. Mohideen, Mohamedazeem M. & Liu, Yong & Ramakrishna, Seeram, 2020. "Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation," Applied Energy, Elsevier, vol. 257(C).
    13. Qiu, Diankai & Janßen, Holger & Peng, Linfa & Irmscher, Philipp & Lai, Xinmin & Lehnert, Werner, 2018. "Electrical resistance and microstructure of typical gas diffusion layers for proton exchange membrane fuel cell under compression," Applied Energy, Elsevier, vol. 231(C), pages 127-137.
    14. Nguyen, Xuan Linh & Vu, Hoang Nghia & Yu, Sangseok, 2021. "Parametric understanding of vapor transport of hollow fiber membranes for design of a membrane humidifier," Renewable Energy, Elsevier, vol. 177(C), pages 1293-1307.
    15. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).
    16. Wang, Yang & Luo, Hui & Li, Guang & Jiang, Jianming, 2016. "Highly active platinum electrocatalyst towards oxygen reduction reaction in renewable energy generations of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 173(C), pages 59-66.
    17. Andersson, M. & Beale, S.B. & Espinoza, M. & Wu, Z. & Lehnert, W., 2016. "A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 180(C), pages 757-778.
    18. Pan, Pengcheng & Sun, Yuwei & Yuan, Chengqing & Yan, Xinping & Tang, Xujing, 2021. "Research progress on ship power systems integrated with new energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Wang, Junye, 2015. "Barriers of scaling-up fuel cells: Cost, durability and reliability," Energy, Elsevier, vol. 80(C), pages 509-521.
    20. Antonio Guarino & Giovanni Petrone & Walter Zamboni, 2019. "Improving the Performance of a Dual Kalman Filter for the Identification of PEM Fuel Cells in Impedance Spectroscopy Experiments," Energies, MDPI, vol. 12(17), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14653-:d:965822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.