IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v256y2019ics0306261919316460.html
   My bibliography  Save this article

A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems

Author

Listed:
  • Yang, Zirong
  • Du, Qing
  • Jia, Zhiwei
  • Yang, Chunguang
  • Xuan, Jin
  • Jiao, Kui

Abstract

A comprehensive proton exchange membrane fuel cell (PEMFC) system model is developed, including a pseudo two-dimensional transient multiphase stack model, a one-dimensional transient multiphase membrane humidifier model, a one-dimensional electrochemical hydrogen pump model, an air compressor model with proportion-integral-derivative control and a ribbon-tubular fin radiator model. All sub-models have been rigorously validated against experimental data to guarantee the system model accuracy. The effects of stack operating temperature, gas flow pattern and humidifier structural design are investigated to cast insights into the interaction among stack and auxiliary subsystems. The results indicate that the stack is successfully maintained at required operating temperatures (60 °C, 70 °C, 80 °C) with help of the radiator when the whole system starts from ambient temperature (25 °C). However, the stack is likely to suffer from membrane dehydration when operated at 70 °C, and the problem becomes more severe at 80 °C, causing significant performance deterioration. The water and temperature distribution inside the system are further demonstrated. The co-current flow pattern contributes to better water utilization of the whole system which may lead to higher output performances. But the counter-current flow pattern has positive effects on parameter distribution uniformity inside fuel cell, which is beneficial for the stack durability. As regards the membrane dehydration, it is found that optimizing membrane humidifier area does not fundamentally solve the problem. Increasing humidifier area contributes to higher water vapor transfer rate, however, it results in much slower humidification responses.

Suggested Citation

  • Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316460
    DOI: 10.1016/j.apenergy.2019.113959
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919316460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yong-Song & Yang, Chih-Wei & Lee, Jiunn-Yih, 2014. "Implementation and evaluation for anode purging of a fuel cell based on nitrogen concentration," Applied Energy, Elsevier, vol. 113(C), pages 1519-1524.
    2. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    3. Jian, Qi-fei & Ma, Guang-qing & Qiu, Xiao-liang, 2014. "Influences of gas relative humidity on the temperature of membrane in PEMFC with interdigitated flow field," Renewable Energy, Elsevier, vol. 62(C), pages 129-136.
    4. Matraji, Imad & Laghrouche, Salah & Jemei, Samir & Wack, Maxime, 2013. "Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode," Applied Energy, Elsevier, vol. 104(C), pages 945-957.
    5. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Ren, Peng & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 224(C), pages 42-51.
    6. Chang, Yafei & Qin, Yanzhou & Yin, Yan & Zhang, Junfeng & Li, Xianguo, 2018. "Humidification strategy for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 230(C), pages 643-662.
    7. Iranzo, Alfredo & Boillat, Pierre & Biesdorf, Johannes & Salva, Antonio, 2015. "Investigation of the liquid water distributions in a 50 cm2 PEM fuel cell: Effects of reactants relative humidity, current density, and cathode stoichiometry," Energy, Elsevier, vol. 82(C), pages 914-921.
    8. Ashrafi, Moosa & Kanani, Homayoon & Shams, Mehrzad, 2018. "Numerical and experimental study of two-phase flow uniformity in channels of parallel PEM fuel cells with modified Z-type flow-fields," Energy, Elsevier, vol. 147(C), pages 317-328.
    9. Yang, Shipin & Chellali, Ryad & Lu, Xiaohua & Li, Lijuan & Bo, Cuimei, 2016. "Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm," Energy, Elsevier, vol. 109(C), pages 569-577.
    10. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    11. Pei, Pucheng & Li, Yuehua & Xu, Huachi & Wu, Ziyao, 2016. "A review on water fault diagnosis of PEMFC associated with the pressure drop," Applied Energy, Elsevier, vol. 173(C), pages 366-385.
    12. Mengbo Ji & Zidong Wei, 2009. "A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 2(4), pages 1-50, November.
    13. Ozen, Dilek Nur & Timurkutluk, Bora & Altinisik, Kemal, 2016. "Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1298-1306.
    14. Hosseinzadeh, Elham & Rokni, Masoud & Rabbani, Abid & Mortensen, Henrik Hilleke, 2013. "Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system," Applied Energy, Elsevier, vol. 104(C), pages 434-444.
    15. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    16. Islam, M.R. & Shabani, B. & Rosengarten, G. & Andrews, J., 2015. "The potential of using nanofluids in PEM fuel cell cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 523-539.
    17. Rabbani, Abid & Rokni, Masoud, 2013. "Effect of nitrogen crossover on purging strategy in PEM fuel cell systems," Applied Energy, Elsevier, vol. 111(C), pages 1061-1070.
    18. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    19. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Jiao, Kui, 2019. "Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model," Energy, Elsevier, vol. 183(C), pages 462-476.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Longquan & Liu, Zhiqiang & Deng, Chengwei & Ren, Jingzheng & Ji, Feng & Sun, Yi & Xiao, Zhenyu & Yang, Sheng, 2021. "Conventional and advanced exergy analyses of a vehicular proton exchange membrane fuel cell power system," Energy, Elsevier, vol. 222(C).
    2. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    3. Zhijie Duan & Chen Li & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong & Dongfang Chen, 2021. "Investigation on Energy Flow Characteristics of Fuel Cell System Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-13, December.
    4. Zhao, Jian & Li, Xianguo & Shum, Chris & McPhee, John, 2023. "Control-oriented computational fuel cell dynamics modeling – Model order reduction vs. computational speed," Energy, Elsevier, vol. 266(C).
    5. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
    6. Fu, Hao & Shen, Jiong & Sun, Li & Lee, Kwang Y., 2021. "In-depth characteristic analysis and wide range optimal operation of fuel cell using multi-model predictive control," Energy, Elsevier, vol. 234(C).
    7. Gong, Zhichao & Wang, Bowen & Xu, Yifan & Ni, Meng & Gao, Qingchen & Hou, Zhongjun & Cai, Jun & Gu, Xin & Yuan, Xinjie & Jiao, Kui, 2022. "Adaptive optimization strategy of air supply for automotive polymer electrolyte membrane fuel cell in life cycle," Applied Energy, Elsevier, vol. 325(C).
    8. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    9. Li, Longquan & Liu, Zhiqiang & Deng, Chengwei & Xie, Nan & Ren, Jingzheng & Sun, Yi & Xiao, Zhenyu & Lei, Kun & Yang, Sheng, 2022. "Thermodynamic and exergoeconomic analyses of a vehicular fuel cell power system with waste heat recovery for cabin heating and reactants preheating," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Jiao, Kui, 2019. "Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model," Energy, Elsevier, vol. 183(C), pages 462-476.
    2. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    4. Zhao, Junjie & Tu, Zhengkai & Chan, Siew Hwa, 2022. "In-situ measurement of humidity distribution and its effect on the performance of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 239(PD).
    5. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    6. Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Hoang Nghia Vu & Xuan Linh Nguyen & Sangseok Yu, 2022. "A Lumped-Mass Model of Membrane Humidifier for PEMFC," Energies, MDPI, vol. 15(6), pages 1-16, March.
    8. Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
    9. Afra, Mehran & Nazari, Mohsen & Kayhani, Mohammad Hasan & Sharifpur, M. & Meyer, J.P., 2019. "3D experimental visualization of water flooding in proton exchange membrane fuel cells," Energy, Elsevier, vol. 175(C), pages 967-977.
    10. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    11. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    12. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    13. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).
    14. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    15. Chen, Xin & Zhang, Ying & Xu, Sheng & Dong, Fei, 2023. "Bibliometric analysis for research trends and hotspots in heat and mass transfer and its management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 333(C).
    16. Pahon, E. & Yousfi Steiner, N. & Jemei, S. & Hissel, D. & Moçoteguy, P., 2016. "A signal-based method for fast PEMFC diagnosis," Applied Energy, Elsevier, vol. 165(C), pages 748-758.
    17. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    19. Hou, Yuze & Deng, Hao & Pan, Fengwen & Chen, Wenmiao & Du, Qing & Jiao, Kui, 2019. "Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Pei, Pucheng & Ren, Peng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 235(C), pages 729-738.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.