IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2570-d1656664.html
   My bibliography  Save this article

Optimization of Gradient Catalyst Layers in PEMFCs Based on Neural Network Models

Author

Listed:
  • Guo-Rui Zhao

    (Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Wen-Zhen Fang

    (Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Zi-Hao Xuan

    (Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Wen-Quan Tao

    (Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

The high cost of platinum (Pt) catalysts impedes the widespread commercialization of proton exchange membrane fuel cells (PEMFCs). Reducing Pt loading will increase local oxygen transport resistance ( R Pt O 2 ) and decrease performance. Due to the oxygen transport resistance, the reactants in the cathode catalyst layer (CCL) are not evenly distributed. The gradient structure can cooperate with the unevenly distributed reactants in CL to enhance the Pt utilization. In this work, a one-dimensional gradient CCL model considering R Pt O 2 is established, and the optimal gradient structure is optimized by combining the artificial neural network (ANN) model and the genetic algorithm (GA). The optimal structure parameters of non-gradient CCL are l CL equal to 8.86 μm, r C equal to 36.82 nm, and I/C equal to 0.48, with the objective of maximum current density ( I max ); l CL equal to 4.24 μm, r C equal to 36.60 nm, and I/C equal to 0.76, with the objective of maximum power density ( P max ). For the gradient CCL, the best gradient distribution enables Pt loading to increase from the membrane (MEM) side to the gas diffusion layer (GDL) side and the ionomer volume fraction to decrease from the MEM side to the GDL side.

Suggested Citation

  • Guo-Rui Zhao & Wen-Zhen Fang & Zi-Hao Xuan & Wen-Quan Tao, 2025. "Optimization of Gradient Catalyst Layers in PEMFCs Based on Neural Network Models," Energies, MDPI, vol. 18(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2570-:d:1656664
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2570/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2570/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
    2. Wee, Jung-Ho, 2007. "Applications of proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1720-1738, October.
    3. Roshandel, Ramin & Ahmadi, Farzad, 2013. "Effects of catalyst loading gradient in catalyst layers on performance of polymer electrolyte membrane fuel cells," Renewable Energy, Elsevier, vol. 50(C), pages 921-931.
    4. Kongstein, O.E. & Berning, T. & Børresen, B. & Seland, F. & Tunold, R., 2007. "Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes," Energy, Elsevier, vol. 32(4), pages 418-422.
    5. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    6. Xuan, Zi-Hao & Fang, Wen-Zhen & Zhao, Guo-Rui & Tao, Wen-Quan, 2025. "Optimal gradient designs of catalyst layers for boosting performance: A data-driven-assisted model," Applied Energy, Elsevier, vol. 377(PD).
    7. Zhang, Jingjing & Wang, Biao & Jin, Junhong & Yang, Shenglin & Li, Guang, 2022. "A review of the microporous layer in proton exchange membrane fuel cells: Materials and structural designs based on water transport mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    9. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    10. Yu, Rui Jiao & Guo, Hang & Ye, Fang & Chen, Hao, 2022. "Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density," Applied Energy, Elsevier, vol. 324(C).
    11. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    12. Lin, Rui & Wang, Hong & Zhu, Yu, 2021. "Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density," Energy, Elsevier, vol. 221(C).
    13. Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    2. Xuan, Zi-Hao & Fang, Wen-Zhen & Zhao, Guo-Rui & Tao, Wen-Quan, 2025. "Optimal gradient designs of catalyst layers for boosting performance: A data-driven-assisted model," Applied Energy, Elsevier, vol. 377(PD).
    3. Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
    4. Asadi, Mohammad Reza & Ghasabehi, Mehrdad & Ghanbari, Sina & Shams, Mehrzad, 2024. "The optimization of an innovative interdigitated flow field proton exchange membrane fuel cell by using artificial intelligence," Energy, Elsevier, vol. 290(C).
    5. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Xu, Jiamin, 2023. "Multi-objective optimization of graded catalyst layer to improve performance and current density uniformity of a PEMFC," Energy, Elsevier, vol. 262(PB).
    6. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    7. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    8. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    9. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    10. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    11. Nguyen, Ba Hieu & Kim, Hyun Chul, 2024. "Novel design of a staggered-trap/block flow field for use in serpentine proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 236(C).
    12. Chu, Tiankuo & Tang, Qianwen & Wang, Qinpu & Wang, Yanbo & Du, Hong & Guo, YuQing & Li, Bing & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2023. "Experimental study on the effect of flow channel parameters on the durability of PEMFC stack and analysis of hydrogen crossover mechanism," Energy, Elsevier, vol. 264(C).
    13. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    14. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    15. Zhu, Li & Chen, Junghui, 2018. "Prognostics of PEM fuel cells based on Gaussian process state space models," Energy, Elsevier, vol. 149(C), pages 63-73.
    16. Yuzhen Xia & Hangwei Lei & Xiaojun Wu & Guilin Hu & Hao Pan & Baizeng Fang, 2023. "Design of New Test System for Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(2), pages 1-11, January.
    17. Xuan, Lingfeng & Wang, Yancheng & Lan, Jinwei & Tao, Kai & Zhou, Caiying & Mei, Deqing, 2023. "Development of cathode ordered membrane electrode assembly based on TiO2 nanowire array and ultrasonic spraying," Energy, Elsevier, vol. 264(C).
    18. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    19. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    20. Noor H. Jawad & Ali Amer Yahya & Ali R. Al-Shathr & Hussein G. Salih & Khalid T. Rashid & Saad Al-Saadi & Adnan A. AbdulRazak & Issam K. Salih & Adel Zrelli & Qusay F. Alsalhy, 2022. "Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review," Sustainability, MDPI, vol. 14(21), pages 1-48, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2570-:d:1656664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.