IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4525-d1164049.html
   My bibliography  Save this article

Topology and Control of Fuel Cell Generation Converters

Author

Listed:
  • Jinghua Zhou

    (Inverter Technology Engineering Research Center of Beijing, North China University of Technology, Beijing 100144, China)

  • Qi Zhang

    (Inverter Technology Engineering Research Center of Beijing, North China University of Technology, Beijing 100144, China)

  • Jin Li

    (Inverter Technology Engineering Research Center of Beijing, North China University of Technology, Beijing 100144, China)

Abstract

Fuel cell power generation is one of the important ways of utilizing hydrogen energy, which has good prospects for development. However, fuel cell volt-ampere characteristics are nonlinear, the output voltage is low and the fluctuation range is large, and a power electronic converter matching its characteristics is required to achieve efficient and stable work. Based on the analysis of the fuel cell’s characteristic mechanism, maximum power point tracking algorithm, fuel cell converter characteristics, application and converter control strategy, the paper summarizes the general principles of the topology of fuel cell converters. In addition, based on the development status of new energy, hydrogen energy is organically combined with other new energy sources, and the concept of 100% absorption system of new energy with green hydrogen as the main body is proposed to provide a reference for the development of hydrogen energy.

Suggested Citation

  • Jinghua Zhou & Qi Zhang & Jin Li, 2023. "Topology and Control of Fuel Cell Generation Converters," Energies, MDPI, vol. 16(11), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4525-:d:1164049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4525/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4525/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    2. Guangjin Pan & Yunpeng Bai & Huihui Song & Yanbin Qu & Yang Wang & Xiaofei Wang, 2023. "Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies," Energies, MDPI, vol. 16(6), pages 1-16, March.
    3. Noor H. Jawad & Ali Amer Yahya & Ali R. Al-Shathr & Hussein G. Salih & Khalid T. Rashid & Saad Al-Saadi & Adnan A. AbdulRazak & Issam K. Salih & Adel Zrelli & Qusay F. Alsalhy, 2022. "Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review," Sustainability, MDPI, vol. 14(21), pages 1-48, November.
    4. Felix Lippkau & David Franzmann & Thushara Addanki & Patrick Buchenberg & Heidi Heinrichs & Philipp Kuhn & Thomas Hamacher & Markus Blesl, 2023. "Global Hydrogen and Synfuel Exchanges in an Emission-Free Energy System," Energies, MDPI, vol. 16(7), pages 1-20, April.
    5. Rekha Guchhait & Biswajit Sarkar, 2023. "Increasing Growth of Renewable Energy: A State of Art," Energies, MDPI, vol. 16(6), pages 1-29, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangjin Pan & Yunpeng Bai & Huihui Song & Yanbin Qu & Yang Wang & Xiaofei Wang, 2023. "Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies," Energies, MDPI, vol. 16(6), pages 1-16, March.
    2. Adeola Akinpelu & Md Shafiul Alam & Md Shafiullah & Syed Masiur Rahman & Fahad Saleh Al-Ismail, 2023. "Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    3. Ahmed Abdelhak Smadi & Farid Khoucha & Yassine Amirat & Abdeldjabar Benrabah & Mohamed Benbouzid, 2023. "Active Disturbance Rejection Control of an Interleaved High Gain DC-DC Boost Converter for Fuel Cell Applications," Energies, MDPI, vol. 16(3), pages 1-17, January.
    4. Sultan Kaheel & Khalifa Aliyu Ibrahim & Gasem Fallatah & Venkatasubramanian Lakshminarayanan & Patrick Luk & Zhenhua Luo, 2023. "Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status and Future Potential," Energies, MDPI, vol. 16(24), pages 1-29, December.
    5. Victor Mercier & Adriano Ceschia & Toufik Azib & Cherif Larouci, 2023. "Pre-Sizing Approach of a Fuel Cell-Battery Hybrid Power System with Interleaved Converters," Energies, MDPI, vol. 16(10), pages 1-21, May.
    6. Tariq Kamal & Syed Zulqadar Hassan, 2023. "Special Issue “Applications of Advanced Control and Optimization Paradigms in Renewable Energy Systems”," Energies, MDPI, vol. 16(22), pages 1-4, November.
    7. Amal Bouich & Inmaculada Guaita Pradas & Mehwish Aziz Khan & Yousaf Hameed Khattak, 2023. "Opportunities, Challenges, and Future Prospects of the Solar Cell Market," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    8. Ahmed Fathy & Abdulmohsen Alanazi, 2023. "An Efficient White Shark Optimizer for Enhancing the Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    9. Shaima A. Alnaqbi & Abdul Hai Alami, 2023. "Sustainability and Renewable Energy in the UAE: A Case Study of Sharjah," Energies, MDPI, vol. 16(20), pages 1-30, October.
    10. Faten Derouez & Adel Ifa, 2024. "Sustainable Food Security: Balancing Desalination, Climate Change, and Population Growth in Five Arab Countries Using ARDL and VECM," Sustainability, MDPI, vol. 16(6), pages 1-25, March.
    11. Athanasios Mandilas & Dimitrios Kourtidis & Giannoula Florou & Stavros Valsamidis, 2023. "A Framework for Sustainability Reporting of Renewable Energy Companies in Greece," Sustainability, MDPI, vol. 15(19), pages 1-33, September.
    12. Igor Tatarewicz & Sławomir Skwierz & Michał Lewarski & Robert Jeszke & Maciej Pyrka & Monika Sekuła, 2023. "Mapping the Future of Green Hydrogen: Integrated Analysis of Poland and the EU’s Development Pathways to 2050," Energies, MDPI, vol. 16(17), pages 1-27, August.
    13. Emanuele Cutore & Alberto Fichera & Rosaria Volpe, 2023. "A Roadmap for the Design, Operation and Monitoring of Renewable Energy Communities in Italy," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    14. Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
    15. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4525-:d:1164049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.