IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2634-d1659788.html
   My bibliography  Save this article

The Use of Abandoned Salt Caverns for Energy Storage and Environmental Protection: A Review, Current Status and Future Protections

Author

Listed:
  • Yun Luo

    (School of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China)

  • Wei Liu

    (School of Resource and Safety Engineering, Chongqing University, Chongqing 400044, China)

  • Hongxing Wang

    (School of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China)

  • Keyao Li

    (School of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China)

Abstract

The existence of a large number of abandoned salt caverns in China has posed a great threat to geological safety and environmental protection, and it also wasted enormous underground space resources. To address such problems, comprehensive utilization of these salt caverns has been proposed both currently and in the future, mainly consisting of energy storage and waste disposal. Regarding energy storage in abandoned salt caverns, the storage media, such as gas, oil, compressed air and hydrogen, have been introduced respectively in terms of the current development and future implementation, with site-selection criteria demonstrated in detail. The recommended burial depth of abandoned salt caverns for gas storage is 1000–1500 m, while it should be less than 1000 m for oil storage. Salt cavern compressed air storage has more advantages in construction and energy storage economics. Salt cavern hydrogen storage imposes stricter requirements on surrounding rock tightness, and its location should be near the hydrogen production facilities. The technical idea of storing ammonia in abandoned salt caverns (indirect hydrogen storage) has been proposed to enhance the energy storage density. For the disposal of wastes, including low-level nuclear waste and industrial waste, the applicable conditions, technical difficulties, and research prospects in this field have been reviewed. The disposal of nuclear waste in salt caverns is not currently recommended due to the complex damage mechanism of layered salt rock and the specific locations of salt mines in China. Industrial waste disposal is relatively mature internationally, but in China, policy and technical research require strengthening to promote its application. Furthermore, considering the recovery of salt mines and the development of salt industries, the cooperation between energy storage regions and salt mining regions has been discussed. The economic and environmental benefits of utilizing abandoned salt caverns have been demonstrated. This study provides a solution to handle the abandoned salt caverns in China and globally.

Suggested Citation

  • Yun Luo & Wei Liu & Hongxing Wang & Keyao Li, 2025. "The Use of Abandoned Salt Caverns for Energy Storage and Environmental Protection: A Review, Current Status and Future Protections," Energies, MDPI, vol. 18(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2634-:d:1659788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2634/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2634/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
    2. Alvaro Maia da Costa & Pedro V. M da Costa & Okhiria D. Udebhulu & Ricardo Cabral Azevedo & Nelson F. F. Ebecken & Antonio C. O. Miranda & Sérgio M. de Eston & Giorgio de Tomi & Julio R. Meneghini & K, 2019. "Potential of storing gas with high CO2 content in salt caverns built in ultra‐deep water in Brazil," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(1), pages 79-94, February.
    3. Yang, Chunhe & Wang, Tongtao & Li, Yinping & Yang, Haijun & Li, Jianjun & Qu, Dan’an & Xu, Baocai & Yang, Yun & Daemen, J.J.K., 2015. "Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China," Applied Energy, Elsevier, vol. 137(C), pages 467-481.
    4. Wei, Xinxing & Ban, Shengnan & Shi, Xilin & Li, Peng & Li, Yinping & Zhu, Shijie & Yang, Kun & Bai, Weizheng & Yang, Chunhe, 2023. "Carbon and energy storage in salt caverns under the background of carbon neutralization in China," Energy, Elsevier, vol. 272(C).
    5. Guangjin Pan & Yunpeng Bai & Huihui Song & Yanbin Qu & Yang Wang & Xiaofei Wang, 2023. "Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies," Energies, MDPI, vol. 16(6), pages 1-16, March.
    6. Jingcui Li & Jifang Wan & Hangming Liu & Maria Jose Jurado & Yuxian He & Guangjie Yuan & Yan Xia, 2022. "Stability Analysis of a Typical Salt Cavern Gas Storage in the Jintan Area of China," Energies, MDPI, vol. 15(11), pages 1-15, June.
    7. Li, Jinlong & Tang, Yao & Shi, Xilin & Xu, Wenjie & Yang, Chunhe, 2019. "Modeling the construction of energy storage salt caverns in bedded salt," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Xinxing & Shi, Xilin & Li, Yinping & Li, Peng & Ban, Shengnan & Zhao, Kai & Ma, Hongling & Liu, Hejuan & Yang, Chunhe, 2023. "A comprehensive feasibility evaluation of salt cavern oil energy storage system in China," Applied Energy, Elsevier, vol. 351(C).
    2. Xue, Tianfu & Shi, Xilin & Wang, Guibin & Liu, Xin & Wei, Xinxing & Ding, Shuanglong & Fu, Xinghui, 2024. "Study on repairing technical parameters of irregular gas storage salt caverns," Energy, Elsevier, vol. 293(C).
    3. Zhao, Kai & Yu, Sihao & Wong, Louis Ngai Yuen, 2025. "Long-term stability forecasting for energy storage salt caverns using deep learning-based model," Energy, Elsevier, vol. 319(C).
    4. Liang, Xiaopeng & Ma, Hongling & Cai, Rui & Zhao, Kai & Zeng, Zhen & Li, Hang & Yang, Chunhe, 2023. "Feasibility analysis of natural gas storage in the voids of sediment within salt cavern——A case study in China," Energy, Elsevier, vol. 285(C).
    5. Li, Hang & Ma, Hongling & Liu, Jiang & Zhu, Shijie & Zhao, Kai & Zheng, Zhuyan & Zeng, Zhen & Yang, Chunhe, 2023. "Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China," Energy, Elsevier, vol. 281(C).
    6. Li, Jinlong & Zhang, Ning & Xu, Wenjie & Naumov, Dmitri & Fischer, Thomas & Chen, Yunmin & Zhuang, Duanyang & Nagel, Thomas, 2022. "The influence of cavern length on deformation and barrier integrity around horizontal energy storage salt caverns," Energy, Elsevier, vol. 244(PB).
    7. Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Bai, Weizheng & Wei, Xinxing & Yang, Kun & Li, Peng & Li, Hang & Li, Yinping & Wang, Guibin, 2024. "Site selection evaluation for salt cavern hydrogen storage in China," Renewable Energy, Elsevier, vol. 224(C).
    8. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    9. Li, Jinlong & Shi, Xilin & Zhang, Shuai, 2020. "Construction modeling and parameter optimization of multi-step horizontal energy storage salt caverns," Energy, Elsevier, vol. 203(C).
    10. Jingcui Li & Jifang Wan & Hangming Liu & Maria Jose Jurado & Yuxian He & Guangjie Yuan & Yan Xia, 2022. "Stability Analysis of a Typical Salt Cavern Gas Storage in the Jintan Area of China," Energies, MDPI, vol. 15(11), pages 1-15, June.
    11. Huiyong Song & Song Zhu & Jinlong Li & Zhuoteng Wang & Qingdong Li & Zexu Ning, 2023. "Design Criteria for the Construction of Energy Storage Salt Cavern Considering Economic Benefits and Resource Utilization," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    12. Li, Peng & Li, Yinping & Shi, Xilin & Zhu, Shijie & Ma, Hongling & Yang, Chunhe, 2024. "Gas tightness around salt cavern gas storage in bedded salt formations," Renewable Energy, Elsevier, vol. 233(C).
    13. He, Tao & Wang, Tongtao & Wang, Duocai & Xie, Dongzhou & Dong, Zhikai & Zhang, Hong & Ma, Tieliang & Daemen, J.J.K., 2023. "Integrity analysis of wellbores in the bedded salt cavern for energy storage," Energy, Elsevier, vol. 263(PB).
    14. Liu, Jia & Zhu, Song & Wanyan, Qiqi & Li, Kang & Xu, Wenjie & Zhuang, Duanyang & Zhan, Liangtong & Chen, Yunmin & Li, Jinlong, 2024. "Volume-of-fluid-based method for three-dimensional shape prediction during the construction of horizontal salt caverns energy storage," Energy, Elsevier, vol. 302(C).
    15. Jian Wang & Peng Li & Weizheng Bai & Jun Lu & Xinghui Fu & Yaping Fu & Xilin Shi, 2024. "Mechanical Behavior of Sediment-Type High-Impurity Salt Cavern Gas Storage during Long-Term Operation," Energies, MDPI, vol. 17(16), pages 1-14, August.
    16. Lyu, Cheng & Dai, Hangyu & Ma, Chao & Zhou, Ping & Zhao, Chengxing & Xu, Deng & Zhang, Liangquan & Liang, Chao, 2024. "Prediction model for three-dimensional surface subsidence of salt cavern storage with different shapes," Energy, Elsevier, vol. 297(C).
    17. Fu, Liupeng & Fan, Jinyang & Shi, Xilin & Zhu, Shijie & Wei, Xinxing & Tian, Hao, 2025. "Concealed morphology construction and stability evaluation of two butted-well horizontal salt caverns gas storage," Energy, Elsevier, vol. 317(C).
    18. Bai, Weizheng & Shi, Xilin & Yang, Chunhe & Zhu, Shijie & Wei, Xinxing & Li, Yinping & Liu, Xin, 2024. "Assessment of the potential of salt mines for renewable energy peaking in China," Energy, Elsevier, vol. 300(C).
    19. Li, Peng & Li, Yinping & Shi, Xilin & Zhao, Kai & Liang, Xiaopeng & Ma, Hongling & Yang, Chunhe & Liu, Kai, 2022. "Compaction and restraining effects of insoluble sediments in underground energy storage salt caverns," Energy, Elsevier, vol. 249(C).
    20. Jinlong, Li & Wenjie, Xu & Jianjing, Zheng & Wei, Liu & Xilin, Shi & Chunhe, Yang, 2020. "Modeling the mining of energy storage salt caverns using a structural dynamic mesh," Energy, Elsevier, vol. 193(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2634-:d:1659788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.