IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v60y2013icp226-234.html
   My bibliography  Save this article

Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle

Author

Listed:
  • Pierobon, Leonardo
  • Rokni, Masoud
  • Larsen, Ulrik
  • Haglind, Fredrik

Abstract

A 100 kWe hybrid plant consisting of gasification system, solid oxide fuel cells and organic Rankine cycle is presented. The nominal power is selected based on cultivation area requirement. For the considered output a land of around 0.5 km2 needs to be utilized. Woodchips are introduced into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells – organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations of state). A genetic algorithm is employed to select the optimal working fluid and the maximum pressure for the bottoming cycle. Thermodynamic and physical properties, environmental impacts and hazard specifications are also considered in the screening process. The results suggest that efficiencies in the region of 54–56% can be achieved. The highest thermal efficiency (56.4%) is achieved with propylcyclohexane at 15.9 bar. A comparison with the available and future technologies for biomass to electricity conversion is carried out. It is shown that the proposed system presents twice the thermal efficiency achieved by simple and double stage organic Rankine cycle plants and around the same efficiency of a combined gasification, solid oxide fuel cells and micro gas turbine plant.

Suggested Citation

  • Pierobon, Leonardo & Rokni, Masoud & Larsen, Ulrik & Haglind, Fredrik, 2013. "Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle," Renewable Energy, Elsevier, vol. 60(C), pages 226-234.
  • Handle: RePEc:eee:renene:v:60:y:2013:i:c:p:226-234
    DOI: 10.1016/j.renene.2013.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113002668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dunbar, William R. & Lior, Noam & Gaggioli, Richard A., 1991. "Combining fuel cells with fuel-fired power plants for improved exergy efficiency," Energy, Elsevier, vol. 16(10), pages 1259-1274.
    2. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    3. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    4. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    5. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    6. Centeno, Felipe & Mahkamov, Khamid & Silva Lora, Electo E. & Andrade, Rubenildo V., 2012. "Theoretical and experimental investigations of a downdraft biomass gasifier-spark ignition engine power system," Renewable Energy, Elsevier, vol. 37(1), pages 97-108.
    7. Coronado, Christian Rodriguez & Yoshioka, Juliana Tiyoko & Silveira, José Luz, 2011. "Electricity, hot water and cold water production from biomass. Energetic and economical analysis of the compact system of cogeneration run with woodgas from a small downdraft gasifier," Renewable Energy, Elsevier, vol. 36(6), pages 1861-1868.
    8. Bellomare, Filippo & Rokni, Masoud, 2013. "Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine," Renewable Energy, Elsevier, vol. 55(C), pages 490-500.
    9. Rokni, Masoud, 2010. "Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle," Energy, Elsevier, vol. 35(12), pages 4691-4699.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gadsbøll, Rasmus Østergaard & Thomsen, Jesper & Bang-Møller, Christian & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2017. "Solid oxide fuel cells powered by biomass gasification for high efficiency power generation," Energy, Elsevier, vol. 131(C), pages 198-206.
    2. Gürgen, Samet & Altın, İsmail, 2022. "Novel decision-making strategy for working fluid selection in Organic Rankine Cycle: A case study for waste heat recovery of a marine diesel engine," Energy, Elsevier, vol. 252(C).
    3. Vialetto, Giulio & Rokni, Masoud, 2015. "Innovative household systems based on solid oxide fuel cells for a northern European climate," Renewable Energy, Elsevier, vol. 78(C), pages 146-156.
    4. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    5. Eveloy, Valerie & Rodgers, Peter & Al Alili, Ali, 2017. "Multi-objective optimization of a pressurized solid oxide fuel cell – gas turbine hybrid system integrated with seawater reverse osmosis," Energy, Elsevier, vol. 123(C), pages 594-614.
    6. Mazzucco, Andrea & Rokni, Masoud, 2014. "Thermo-economic analysis of a solid oxide fuel cell and steam injected gas turbine plant integrated with woodchips gasification," Energy, Elsevier, vol. 76(C), pages 114-129.
    7. Jia, Junxi & Shu, Lingyun & Zang, Guiyan & Xu, Lijun & Abudula, Abuliti & Ge, Kun, 2018. "Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system," Energy, Elsevier, vol. 149(C), pages 750-761.
    8. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    9. Ong, Samuel & Al-Othman, Amani & Tawalbeh, Muhammad, 2023. "Emerging technologies in prognostics for fuel cells including direct hydrocarbon fuel cells," Energy, Elsevier, vol. 277(C).
    10. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    11. Bartela, Łukasz & Kotowicz, Janusz & Dubiel-Jurgaś, Klaudia, 2018. "Investment risk for biomass integrated gasification combined heat and power unit with an internal combustion engine and a Stirling engine," Energy, Elsevier, vol. 150(C), pages 601-616.
    12. Jia, Junxi & Abudula, Abuliti & Wei, Liming & Sun, Baozhi & Shi, Yue, 2015. "Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system," Renewable Energy, Elsevier, vol. 81(C), pages 400-410.
    13. Guo, Xinru & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin & Ni, Meng & Liao, Tianjun, 2021. "Energetic, exergetic and ecological evaluations of a hybrid system based on a phosphoric acid fuel cell and an organic Rankine cycle," Energy, Elsevier, vol. 217(C).
    14. Bartela, Łukasz & Kotowicz, Janusz & Remiorz, Leszek & Skorek-Osikowska, Anna & Dubiel, Klaudia, 2017. "Assessment of the economic appropriateness of the use of Stirling engine as additional part of a cogeneration system based on biomass gasification," Renewable Energy, Elsevier, vol. 112(C), pages 425-443.
    15. Leonardo Pierobon & Tuong-Van Nguyen & Andrea Mazzucco & Ulrik Larsen & Fredrik Haglind, 2014. "Part-Load Performance of aWet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator," Energies, MDPI, vol. 7(12), pages 1-23, December.
    16. Hui Xing & Charles Stuart & Stephen Spence & Hua Chen, 2021. "Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    17. Haghighat Mamaghani, Alireza & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2015. "4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 82(C), pages 650-663.
    18. Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.
    19. Zhang, Houcheng & Xu, Haoran & Chen, Bin & Dong, Feifei & Ni, Meng, 2017. "Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells," Energy, Elsevier, vol. 132(C), pages 280-288.
    20. Sattari Sadat, Seyed Mohammad & Ghaebi, Hadi & Lavasani, Arash Mirabdolah, 2020. "4E analyses of an innovative polygeneration system based on SOFC," Renewable Energy, Elsevier, vol. 156(C), pages 986-1007.
    21. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    22. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazzucco, Andrea & Rokni, Masoud, 2014. "Thermo-economic analysis of a solid oxide fuel cell and steam injected gas turbine plant integrated with woodchips gasification," Energy, Elsevier, vol. 76(C), pages 114-129.
    2. Rokni, Masoud, 2014. "Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine," Energy, Elsevier, vol. 76(C), pages 19-31.
    3. Rokni, Masoud, 2013. "Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels," Energy, Elsevier, vol. 61(C), pages 87-97.
    4. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.
    5. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    6. Babras Khan & Man-Hoe Kim, 2022. "Energy and Exergy Analyses of a Novel Combined Heat and Power System Operated by a Recuperative Organic Rankine Cycle Integrated with a Water Heating System," Energies, MDPI, vol. 15(18), pages 1-19, September.
    7. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
    8. Petr, Philipp & Raabe, Gabriele, 2015. "Evaluation of R-1234ze(Z) as drop-in replacement for R-245fa in Organic Rankine Cycles – From thermophysical properties to cycle performance," Energy, Elsevier, vol. 93(P1), pages 266-274.
    9. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    10. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    11. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    12. Oyewunmi, Oyeniyi A. & Kirmse, Christoph J.W. & Haslam, Andrew J. & Müller, Erich A. & Markides, Christos N., 2017. "Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine," Applied Energy, Elsevier, vol. 186(P3), pages 376-395.
    13. Jean-Christophe Hoarau & Paola Cinnella & Xavier Gloerfelt, 2021. "Large Eddy Simulations of Strongly Non-Ideal Compressible Flows through a Transonic Cascade," Energies, MDPI, vol. 14(3), pages 1-20, February.
    14. Pierobon, Leonardo & Nguyen, Tuong-Van & Larsen, Ulrik & Haglind, Fredrik & Elmegaard, Brian, 2013. "Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform," Energy, Elsevier, vol. 58(C), pages 538-549.
    15. Taufiq, Bin Nur & Kikuchi, Yasunori & Ishimoto, Takayoshi & Honda, Kuniaki & Koyama, Michihisa, 2015. "Conceptual design of light integrated gasification fuel cell based on thermodynamic process simulation," Applied Energy, Elsevier, vol. 147(C), pages 486-499.
    16. Ho, Tony & Mao, Samuel S. & Greif, Ralph, 2012. "Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy," Energy, Elsevier, vol. 42(1), pages 213-223.
    17. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    18. Barrera, Julian Esteban & Bazzo, Edson & Kami, Eduardo, 2015. "Exergy analysis and energy improvement of a Brazilian floating oil platform using Organic Rankine Cycles," Energy, Elsevier, vol. 88(C), pages 67-79.
    19. Roy, Dibyendu & Samanta, Samiran & Ghosh, Sudip, 2020. "Performance assessment of a biomass fuelled advanced hybrid power generation system," Renewable Energy, Elsevier, vol. 162(C), pages 639-661.
    20. Centeno González, Felipe O. & Mahkamov, Khamid & Silva Lora, Electo E. & Andrade, Rubenildo V. & Jaen, René Lesme, 2013. "Prediction by mathematical modeling of the behavior of an internal combustion engine to be fed with gas from biomass, in comparison to the same engine fueled with gasoline or methane," Renewable Energy, Elsevier, vol. 60(C), pages 427-432.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:60:y:2013:i:c:p:226-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.