IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v88y2015icp67-79.html
   My bibliography  Save this article

Exergy analysis and energy improvement of a Brazilian floating oil platform using Organic Rankine Cycles

Author

Listed:
  • Barrera, Julian Esteban
  • Bazzo, Edson
  • Kami, Eduardo

Abstract

This paper focuses on the exergy performance analysis of the processes on board of a Brazilian FPSO (Floating Production, Storage and Offloading unit) and the integration of an ORC (Organic Rankine Cycle) for improving its efficiency. Based on the exergy analysis of the plant, the integration of an ORC to the existing heat recovery system was modeled. Cyclopentane was chosen as the working fluid and the best configuration of the cycle was determined according to its vapor saturation curve. The improvement was quantified using the plant exergy efficiency and an energy-consumption indicator, assuming a distributed part-load operation of two gas turbines. The study was carried out along an arbitrary profile, at which five of the main production parameters were analyzed separately. According to the results, it appears that the ORC integration has a great potential for generating useful work from the exergy of the exhaust gases, representing savings along the production profile of about 15% based on fuel consumption. On the other hand, the overall exergy efficiency and the ORC power output are strongly influenced by the amounts of gas and water injected back to the reservoir.

Suggested Citation

  • Barrera, Julian Esteban & Bazzo, Edson & Kami, Eduardo, 2015. "Exergy analysis and energy improvement of a Brazilian floating oil platform using Organic Rankine Cycles," Energy, Elsevier, vol. 88(C), pages 67-79.
  • Handle: RePEc:eee:energy:v:88:y:2015:i:c:p:67-79
    DOI: 10.1016/j.energy.2015.03.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215004004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Voldsund, Mari & Nguyen, Tuong-Van & Elmegaard, Brian & Ertesvåg, Ivar S. & Røsjorde, Audun & Jøssang, Knut & Kjelstrup, Signe, 2014. "Exergy destruction and losses on four North Sea offshore platforms: A comparative study of the oil and gas processing plants," Energy, Elsevier, vol. 74(C), pages 45-58.
    2. Pierobon, Leonardo & Nguyen, Tuong-Van & Larsen, Ulrik & Haglind, Fredrik & Elmegaard, Brian, 2013. "Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform," Energy, Elsevier, vol. 58(C), pages 538-549.
    3. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    4. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    5. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.
    6. Nguyen, Tuong-Van & Voldsund, Mari & Elmegaard, Brian & Ertesvåg, Ivar Ståle & Kjelstrup, Signe, 2014. "On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing," Energy, Elsevier, vol. 73(C), pages 264-281.
    7. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    8. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2014. "Oil and gas platforms with steam bottoming cycles: System integration and thermoenvironomic evaluation," Applied Energy, Elsevier, vol. 131(C), pages 222-237.
    9. Pierobon, L. & Benato, A. & Scolari, E. & Haglind, F. & Stoppato, A., 2014. "Waste heat recovery technologies for offshore platforms," Applied Energy, Elsevier, vol. 136(C), pages 228-241.
    10. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    11. Little, Adrienne B. & Garimella, Srinivas, 2011. "Comparative assessment of alternative cycles for waste heat recovery and upgrade," Energy, Elsevier, vol. 36(7), pages 4492-4504.
    12. Nur Izyan, Z. & Shuhaimi, M., 2014. "Exergy analysis for fuel reduction strategies in crude distillation unit," Energy, Elsevier, vol. 66(C), pages 891-897.
    13. Nguyen, Tuong-Van & Fülöp, Tamás Gábor & Breuhaus, Peter & Elmegaard, Brian, 2014. "Life performance of oil and gas platforms: Site integration and thermodynamic evaluation," Energy, Elsevier, vol. 73(C), pages 282-301.
    14. Nguyen, Tuong-Van & Jacyno, Tomasz & Breuhaus, Peter & Voldsund, Mari & Elmegaard, Brian, 2014. "Thermodynamic analysis of an upstream petroleum plant operated on a mature field," Energy, Elsevier, vol. 68(C), pages 454-469.
    15. Abdollahi-Demneh, Farzad & Moosavian, Mohammad Ali & Omidkhah, Mohammad Reza & Bahmanyar, Hossein, 2011. "Calculating exergy in flowsheeting simulators: A HYSYS implementation," Energy, Elsevier, vol. 36(8), pages 5320-5327.
    16. Nguyen, Tuong-Van & Pierobon, Leonardo & Elmegaard, Brian & Haglind, Fredrik & Breuhaus, Peter & Voldsund, Mari, 2013. "Exergetic assessment of energy systems on North Sea oil and gas platforms," Energy, Elsevier, vol. 62(C), pages 23-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Silva, Julio A.M. & de Oliveira Junior, S., 2018. "Unit exergy cost and CO2 emissions of offshore petroleum production," Energy, Elsevier, vol. 147(C), pages 757-766.
    2. Anan Zhang & Hong Zhang & Meysam Qadrdan & Wei Yang & Xiaolong Jin & Jianzhong Wu, 2019. "Optimal Planning of Integrated Energy Systems for Offshore Oil Extraction and Processing Platforms," Energies, MDPI, vol. 12(4), pages 1-28, February.
    3. Nami, Hossein & Ertesvåg, Ivar S. & Agromayor, Roberto & Riboldi, Luca & Nord, Lars O., 2018. "Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - Energy and exergy analysis," Energy, Elsevier, vol. 165(PB), pages 1060-1071.
    4. Chen, Zhengjie & Ma, Wenhui & Wu, Jijun & Wei, Kuixian & Yang, Xi & Lv, Guoqiang & Xie, Keqiang & Yu, Jie, 2016. "Influence of carbothermic reduction on submerged arc furnace energy efficiency during silicon production," Energy, Elsevier, vol. 116(P1), pages 687-693.
    5. Barbosa, Yuri M. & da Silva, Julio A.M. & Junior, Silvio de O. & Torres, Ednildo A., 2019. "Deep seawater as efficiency improver for cogeneration plants of petroleum production units," Energy, Elsevier, vol. 177(C), pages 29-43.
    6. Allahyarzadeh-Bidgoli, Ali & Dezan, Daniel Jonas & Salviano, Leandro Oliveira & de Oliveira Junior, Silvio & Yanagihara, Jurandir Itizo, 2019. "FPSO fuel consumption and hydrocarbon liquids recovery optimization over the lifetime of a deep-water oil field," Energy, Elsevier, vol. 181(C), pages 927-942.
    7. Børset, M.T. & Kolbeinsen, L. & Tveit, H. & Kjelstrup, S., 2015. "Exergy based efficiency indicators for the silicon furnace," Energy, Elsevier, vol. 90(P2), pages 1916-1921.
    8. Vidoza, Jorge A. & Andreasen, Jesper Graa & Haglind, Fredrik & dos Reis, Max M.L. & Gallo, Waldyr, 2019. "Design and optimization of power hubs for Brazilian off-shore oil production units," Energy, Elsevier, vol. 176(C), pages 656-666.
    9. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2016. "CO2-mitigation options for the offshore oil and gas sector," Applied Energy, Elsevier, vol. 161(C), pages 673-694.
    10. Nguyen, Tuong-Van & Voldsund, Mari & Breuhaus, Peter & Elmegaard, Brian, 2016. "Energy efficiency measures for offshore oil and gas platforms," Energy, Elsevier, vol. 117(P2), pages 325-340.
    11. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    12. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2021. "Multi-objective optimization of a novel offshore CHP plant based on a 3E analysis," Energy, Elsevier, vol. 224(C).
    13. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    2. Nami, Hossein & Ertesvåg, Ivar S. & Agromayor, Roberto & Riboldi, Luca & Nord, Lars O., 2018. "Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - Energy and exergy analysis," Energy, Elsevier, vol. 165(PB), pages 1060-1071.
    3. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    4. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    5. Barbosa, Yuri M. & da Silva, Julio A.M. & Junior, Silvio de O. & Torres, Ednildo A., 2019. "Deep seawater as efficiency improver for cogeneration plants of petroleum production units," Energy, Elsevier, vol. 177(C), pages 29-43.
    6. Nguyen, Tuong-Van & de Oliveira Júnior, Silvio, 2018. "Life performance of oil and gas platforms for various production profiles and feed compositions," Energy, Elsevier, vol. 161(C), pages 583-594.
    7. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
    8. Li, Zhuochao & Zhang, Haoran & Meng, Jing & Long, Yin & Yan, Yamin & Li, Meixuan & Huang, Zhongliang & Liang, Yongtu, 2020. "Reducing carbon footprint of deep-sea oil and gas field exploitation by optimization for Floating Production Storage and Offloading," Applied Energy, Elsevier, vol. 261(C).
    9. Flórez-Orrego, Daniel & Henriques, Izabela B. & Nguyen, Tuong-Van & Mendes da Silva, Julio A. & Keutenedjian Mady, Carlos E. & Pellegrini, Luiz Felipe & Gandolfi, Ricardo & Velasquez, Hector I. & Burb, 2018. "The contributions of Prof. Jan Szargut to the exergy and environmental assessment of complex energy systems," Energy, Elsevier, vol. 161(C), pages 482-492.
    10. Carranza Sánchez, Yamid Alberto & de Oliveira, Silvio, 2015. "Exergy analysis of offshore primary petroleum processing plant with CO2 capture," Energy, Elsevier, vol. 88(C), pages 46-56.
    11. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    12. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    13. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    14. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    15. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2021. "Multi-objective optimization of a novel offshore CHP plant based on a 3E analysis," Energy, Elsevier, vol. 224(C).
    16. Suárez de la Fuente, Santiago & Larsen, Ulrik & Pawling, Rachel & García Kerdan, Iván & Greig, Alistair & Bucknall, Richard, 2018. "Using the forward movement of a container ship navigating in the Arctic to air-cool a marine organic Rankine cycle unit," Energy, Elsevier, vol. 159(C), pages 1046-1059.
    17. Benato, A. & Kærn, M.R. & Pierobon, L. & Stoppato, A. & Haglind, F., 2015. "Analysis of hot spots in boilers of organic Rankine cycle units during transient operation," Applied Energy, Elsevier, vol. 151(C), pages 119-131.
    18. da Silva, Julio A.M. & de Oliveira Junior, S., 2018. "Unit exergy cost and CO2 emissions of offshore petroleum production," Energy, Elsevier, vol. 147(C), pages 757-766.
    19. Luca Riboldi & Steve Völler & Magnus Korpås & Lars O. Nord, 2019. "An Integrated Assessment of the Environmental and Economic Impact of Offshore Oil Platform Electrification," Energies, MDPI, vol. 12(11), pages 1-21, June.
    20. Barbosa, Yuri M. & da Silva, Julio A.M. & Junior, Silvio de O. & Torres, Ednildo A., 2018. "Performance assessment of primary petroleum production cogeneration plants," Energy, Elsevier, vol. 160(C), pages 233-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:88:y:2015:i:c:p:67-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.