IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipbp1060-1071.html
   My bibliography  Save this article

Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - Energy and exergy analysis

Author

Listed:
  • Nami, Hossein
  • Ertesvåg, Ivar S.
  • Agromayor, Roberto
  • Riboldi, Luca
  • Nord, Lars O.

Abstract

Effective heat and power supply to offshore installations leads to environmental benefits, but the efficiency is often limited by requirements and constraints connected to the offshore environment. An exergetic analysis of gas turbines exhaust heat recovery on offshore platforms is performed to identify optimal approaches to produce heat and power. Two different configurations are presented, with heat delivery at two temperature levels and power production by an organic Rankine cycle (ORC). In one system (cascade), the high temperature heat is taken from the exhaust after the ORC, while low temperature heat is taken from the ORC condenser. Alternatively, high and low temperature heat is taken from the exhaust gas before the ORC feeds on the remaining exhaust thermal energy (series system). Four different working fluids (three siloxanes, one refrigerant) are considered. In addition, the exergetic effects of the heat loads and heat source temperatures are investigated. The results revealed that MM and R124 are the best working fluids for the cascade and series system, respectively. A recuperated ORC in the series system improve the siloxane results, with MM as the best working fluid. Moreover, decreasing the ORC minimum pressure in the series system makes considerable improvement.

Suggested Citation

  • Nami, Hossein & Ertesvåg, Ivar S. & Agromayor, Roberto & Riboldi, Luca & Nord, Lars O., 2018. "Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - Energy and exergy analysis," Energy, Elsevier, vol. 165(PB), pages 1060-1071.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:1060-1071
    DOI: 10.1016/j.energy.2018.10.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421832022X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barrera, Julian Esteban & Bazzo, Edson & Kami, Eduardo, 2015. "Exergy analysis and energy improvement of a Brazilian floating oil platform using Organic Rankine Cycles," Energy, Elsevier, vol. 88(C), pages 67-79.
    2. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    3. Pierobon, Leonardo & Nguyen, Tuong-Van & Larsen, Ulrik & Haglind, Fredrik & Elmegaard, Brian, 2013. "Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform," Energy, Elsevier, vol. 58(C), pages 538-549.
    4. Fernández, F.J. & Prieto, M.M. & Suárez, I., 2011. "Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids," Energy, Elsevier, vol. 36(8), pages 5239-5249.
    5. Walnum, Harald Taxt & Nekså, Petter & Nord, Lars O. & Andresen, Trond, 2013. "Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions," Energy, Elsevier, vol. 59(C), pages 513-520.
    6. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    7. da Silva, Julio A.M. & de Oliveira Junior, S., 2018. "Unit exergy cost and CO2 emissions of offshore petroleum production," Energy, Elsevier, vol. 147(C), pages 757-766.
    8. Madhawa Hettiarachchi, H.D. & Golubovic, Mihajlo & Worek, William M. & Ikegami, Yasuyuki, 2007. "Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources," Energy, Elsevier, vol. 32(9), pages 1698-1706.
    9. Barbosa, Yuri M. & da Silva, Julio A.M. & Junior, Silvio de O. & Torres, Ednildo A., 2018. "Performance assessment of primary petroleum production cogeneration plants," Energy, Elsevier, vol. 160(C), pages 233-244.
    10. Voldsund, Mari & Ertesvåg, Ivar Ståle & He, Wei & Kjelstrup, Signe, 2013. "Exergy analysis of the oil and gas processing on a North Sea oil platform a real production day," Energy, Elsevier, vol. 55(C), pages 716-727.
    11. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2014. "Oil and gas platforms with steam bottoming cycles: System integration and thermoenvironomic evaluation," Applied Energy, Elsevier, vol. 131(C), pages 222-237.
    12. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    13. Khatita, Mohammed A. & Ahmed, Tamer S. & Ashour, Fatma. H. & Ismail, Ibrahim M., 2014. "Power generation using waste heat recovery by organic Rankine cycle in oil and gas sector in Egypt: A case study," Energy, Elsevier, vol. 64(C), pages 462-472.
    14. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    15. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    16. Nguyen, Tuong-Van & Fülöp, Tamás Gábor & Breuhaus, Peter & Elmegaard, Brian, 2014. "Life performance of oil and gas platforms: Site integration and thermodynamic evaluation," Energy, Elsevier, vol. 73(C), pages 282-301.
    17. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    18. Nguyen, Tuong-Van & Jacyno, Tomasz & Breuhaus, Peter & Voldsund, Mari & Elmegaard, Brian, 2014. "Thermodynamic analysis of an upstream petroleum plant operated on a mature field," Energy, Elsevier, vol. 68(C), pages 454-469.
    19. Nguyen, Tuong-Van & Pierobon, Leonardo & Elmegaard, Brian & Haglind, Fredrik & Breuhaus, Peter & Voldsund, Mari, 2013. "Exergetic assessment of energy systems on North Sea oil and gas platforms," Energy, Elsevier, vol. 62(C), pages 23-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan, Taotao & Chen, Yuhang & Dong, Ao & He, Maogang & Zhang, Ying, 2023. "Intrinsic-group-contribution PC-SAFT and its application in performance analysis of high-temperature organic Rankine cycle with siloxanes and alkanes," Energy, Elsevier, vol. 278(PA).
    2. Tri Tjahjono & Mehdi Ali Ehyaei & Abolfazl Ahmadi & Siamak Hoseinzadeh & Saim Memon, 2021. "Thermo-Economic Analysis on Integrated CO 2 , Organic Rankine Cycles, and NaClO Plant Using Liquefied Natural Gas," Energies, MDPI, vol. 14(10), pages 1-24, May.
    3. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    4. Luca Riboldi & Steve Völler & Magnus Korpås & Lars O. Nord, 2019. "An Integrated Assessment of the Environmental and Economic Impact of Offshore Oil Platform Electrification," Energies, MDPI, vol. 12(11), pages 1-21, June.
    5. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar, 2020. "Thermodynamic, Economic, and Environmental Analyses of a Waste-Fired Trigeneration Plant," Energies, MDPI, vol. 13(10), pages 1-18, May.
    6. M. Ehyaei & M. Kasaeian & Stéphane Abanades & Armin Razmjoo & Hamed Afshari & Marc Rosen & Biplab Das, 2023. "Natural gas‐fueled multigeneration for reducing environmental effects of brine and increasing product diversity: Thermodynamic and economic analyses," Post-Print hal-04113893, HAL.
    7. Wang, Enhua & Mao, Jingwen & Zhang, Bo & Wang, Yongzhen, 2023. "On the CAMD method based on PC-SAFT for working fluid design of a high-temperature organic Rankine cycle," Energy, Elsevier, vol. 263(PD).
    8. Luca Riboldi & Marcin Pilarczyk & Lars O. Nord, 2021. "The Impact of Process Heat on the Decarbonisation Potential of Offshore Installations by Hybrid Energy Systems," Energies, MDPI, vol. 14(23), pages 1-15, December.
    9. Witanowski, Łukasz & Ziółkowski, Paweł & Klonowicz, Piotr & Lampart, Piotr, 2023. "A hybrid approach to optimization of radial inflow turbine with principal component analysis," Energy, Elsevier, vol. 272(C).
    10. Fan, Guangli & Ahmadi, A. & Ehyaei, M.A. & Das, Biplab, 2021. "Energy, exergy, economic and exergoenvironmental analyses of polygeneration system integrated gas cycle, absorption chiller, and Copper-Chlorine thermochemical cycle to produce power, cooling, and hyd," Energy, Elsevier, vol. 222(C).
    11. Hachem, Joe & Schuhler, Thierry & Orhon, Dominique & Cuif-Sjostrand, Marianne & Zoughaib, Assaad & Molière, Michel, 2022. "Exhaust gas recirculation applied to single-shaft gas turbines: An energy and exergy approach," Energy, Elsevier, vol. 238(PB).
    12. Nami, H. & Arabkoohsar, A., 2019. "Improving the power share of waste-driven CHP plants via parallelization with a small-scale Rankine cycle, a thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 27-36.
    13. Zhang, Tao & Ma, Junhua & Zhou, Yanglin & Wang, Yongzhen & Chen, Qifang & Li, Xiaoping & Liu, Liuchen, 2021. "Thermo-economic analysis and optimization of ICE-ORC systems based on a splitter regulation," Energy, Elsevier, vol. 226(C).
    14. Ertesvåg, Ivar S. & Madejski, Paweł & Ziółkowski, Paweł & Mikielewicz, Dariusz, 2023. "Exergy analysis of a negative CO2 emission gas power plant based on water oxy-combustion of syngas from sewage sludge gasification and CCS," Energy, Elsevier, vol. 278(C).
    15. Dominika Matuszewska & Piotr Olczak, 2020. "Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC)," Energies, MDPI, vol. 13(6), pages 1-21, March.
    16. Li, Bo & Wang, Shun-sen, 2022. "Thermodynamic analysis and optimization of a hybrid cascade supercritical carbon dioxide cycle for waste heat recovery," Energy, Elsevier, vol. 259(C).
    17. Dias Raybekovich Umyshev & Eduard Vladislavovich Osipov & Andrey Anatolievich Kibarin & Maxim Sergeyevich Korobkov & Tatyana Viktorovna Khodanova & Zhansaya Serikkyzy Duisenbek, 2023. "Techno-Economic Analysis of the Modernization Options of a Gas Turbine Power Plant Using Aspen HYSYS," Energies, MDPI, vol. 16(6), pages 1-22, March.
    18. Moreira, L.F. & Arrieta, F.R.P., 2019. "Thermal and economic assessment of organic Rankine cycles for waste heat recovery in cement plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    19. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Geothermal driven micro-CCHP for domestic application – Exergy, economic and sustainability analysis," Energy, Elsevier, vol. 207(C).
    20. Zahedi, Rahim & Ahmadi, Abolfazl & Dashti, Reza, 2021. "Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of quadruple combined solar, biogas, SRC and ORC cycles with methane system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    21. Motamed, Mohammad Ali & Nord, Lars O., 2022. "Part-load efficiency boost in offshore organic Rankine cycles with a cooling water flow rate control strategy," Energy, Elsevier, vol. 257(C).
    22. Liu, Jian & Xu, Yantao & Zhang, Yaning & Shuai, Yong & Li, Bingxi, 2022. "Multi-objective optimization of low temperature cooling water organic Rankine cycle using dual pinch point temperature difference technologies," Energy, Elsevier, vol. 240(C).
    23. Mohammad Ali Motamed & Lars O. Nord, 2021. "Assessment of Organic Rankine Cycle Part-Load Performance as Gas Turbine Bottoming Cycle with Variable Area Nozzle Turbine Technology," Energies, MDPI, vol. 14(23), pages 1-18, November.
    24. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2021. "Multi-objective optimization of a novel offshore CHP plant based on a 3E analysis," Energy, Elsevier, vol. 224(C).
    25. Zhang, Bo & Wang, Enhua & Meng, Fanxiao & Zhang, Fujun & Zhao, Changlu, 2020. "Prediction accuracy of thermodynamic properties using PC-SAFT for high-temperature organic Rankine cycle with siloxanes," Energy, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2021. "Multi-objective optimization of a novel offshore CHP plant based on a 3E analysis," Energy, Elsevier, vol. 224(C).
    2. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    3. Nguyen, Tuong-Van & de Oliveira Júnior, Silvio, 2018. "Life performance of oil and gas platforms for various production profiles and feed compositions," Energy, Elsevier, vol. 161(C), pages 583-594.
    4. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    5. da Silva, Julio A.M. & de Oliveira Junior, S., 2018. "Unit exergy cost and CO2 emissions of offshore petroleum production," Energy, Elsevier, vol. 147(C), pages 757-766.
    6. Barbosa, Yuri M. & da Silva, Julio A.M. & Junior, Silvio de O. & Torres, Ednildo A., 2019. "Deep seawater as efficiency improver for cogeneration plants of petroleum production units," Energy, Elsevier, vol. 177(C), pages 29-43.
    7. Barrera, Julian Esteban & Bazzo, Edson & Kami, Eduardo, 2015. "Exergy analysis and energy improvement of a Brazilian floating oil platform using Organic Rankine Cycles," Energy, Elsevier, vol. 88(C), pages 67-79.
    8. Luca Riboldi & Marcin Pilarczyk & Lars O. Nord, 2021. "The Impact of Process Heat on the Decarbonisation Potential of Offshore Installations by Hybrid Energy Systems," Energies, MDPI, vol. 14(23), pages 1-15, December.
    9. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2016. "CO2-mitigation options for the offshore oil and gas sector," Applied Energy, Elsevier, vol. 161(C), pages 673-694.
    10. Nguyen, Tuong-Van & Voldsund, Mari & Breuhaus, Peter & Elmegaard, Brian, 2016. "Energy efficiency measures for offshore oil and gas platforms," Energy, Elsevier, vol. 117(P2), pages 325-340.
    11. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2014. "Oil and gas platforms with steam bottoming cycles: System integration and thermoenvironomic evaluation," Applied Energy, Elsevier, vol. 131(C), pages 222-237.
    12. Luca Riboldi & Steve Völler & Magnus Korpås & Lars O. Nord, 2019. "An Integrated Assessment of the Environmental and Economic Impact of Offshore Oil Platform Electrification," Energies, MDPI, vol. 12(11), pages 1-21, June.
    13. Barbosa, Yuri M. & da Silva, Julio A.M. & Junior, Silvio de O. & Torres, Ednildo A., 2018. "Performance assessment of primary petroleum production cogeneration plants," Energy, Elsevier, vol. 160(C), pages 233-244.
    14. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
    15. Li, Zhuochao & Zhang, Haoran & Meng, Jing & Long, Yin & Yan, Yamin & Li, Meixuan & Huang, Zhongliang & Liang, Yongtu, 2020. "Reducing carbon footprint of deep-sea oil and gas field exploitation by optimization for Floating Production Storage and Offloading," Applied Energy, Elsevier, vol. 261(C).
    16. Vidoza, Jorge A. & Andreasen, Jesper Graa & Haglind, Fredrik & dos Reis, Max M.L. & Gallo, Waldyr, 2019. "Design and optimization of power hubs for Brazilian off-shore oil production units," Energy, Elsevier, vol. 176(C), pages 656-666.
    17. Carranza Sánchez, Yamid Alberto & de Oliveira, Silvio, 2015. "Exergy analysis of offshore primary petroleum processing plant with CO2 capture," Energy, Elsevier, vol. 88(C), pages 46-56.
    18. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    19. Nguyen, Tuong-Van & Fülöp, Tamás Gábor & Breuhaus, Peter & Elmegaard, Brian, 2014. "Life performance of oil and gas platforms: Site integration and thermodynamic evaluation," Energy, Elsevier, vol. 73(C), pages 282-301.
    20. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:1060-1071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.