IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp927-942.html
   My bibliography  Save this article

FPSO fuel consumption and hydrocarbon liquids recovery optimization over the lifetime of a deep-water oil field

Author

Listed:
  • Allahyarzadeh-Bidgoli, Ali
  • Dezan, Daniel Jonas
  • Salviano, Leandro Oliveira
  • de Oliveira Junior, Silvio
  • Yanagihara, Jurandir Itizo

Abstract

A Floating, Production Storage and Offloading (FPSO) plant is a high-energy consumer (from a few to several hundreds of megawatts). Since a number of parameters have effects on the FPSO plant performance, screening analysis procedure could be used to select the most important parameters affecting a given output and an optimization procedure being applied to maximize/minimize an objective function. Thus, optimization procedures focused on fuel consumption and hydrocarbon liquids recovery can improve the energy efficiency, product recovery, and sustainability of the plant. In the present work, optimization procedures are used for an FPSO plant operating at three different conditions of the Brazilian deep-water oil field in pre-salt areas to investigate: (1) Maximum oil/gas content (Mode 1); (2) 50% BS&W oil content (Mode 2) and; (3) High water/CO2 content in oil (Mode 3). In order to reduce the computational efforts, we investigate the contribution of eight thermodynamic input parameters to the fuel consumption of the FPSO plant and hydrocarbon liquids recovery by using the Smoothing Spline ANOVA (SS-ANOVA) method. From SS-ANOVA, the input parameters that presented the major contributions (main and interaction effects) to the fuel consumption and hydrocarbon liquids recovery were selected for the optimization procedure. The optimization procedure consists of a Hybrid method, which is a combination of Non-dominated Sorting Genetic Algorithm (NSGA-II) and AfilterSQP methods. The results from the optimized case indicate that the minimization of fuel consumption is 4.46% for Mode 1, 8.34% for Mode 2 and 2.43% for Mode 3, when compared to the baseline case. Furthermore, the optimum operating conditions found by the optimization procedure of hydrocarbon liquids recovery presented an increase of 4.36% for Mode 1, 3.79% for Mode 2 and 1.75% for Mode 3 in total exportation oil.

Suggested Citation

  • Allahyarzadeh-Bidgoli, Ali & Dezan, Daniel Jonas & Salviano, Leandro Oliveira & de Oliveira Junior, Silvio & Yanagihara, Jurandir Itizo, 2019. "FPSO fuel consumption and hydrocarbon liquids recovery optimization over the lifetime of a deep-water oil field," Energy, Elsevier, vol. 181(C), pages 927-942.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:927-942
    DOI: 10.1016/j.energy.2019.05.146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421931028X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barrera, Julian Esteban & Bazzo, Edson & Kami, Eduardo, 2015. "Exergy analysis and energy improvement of a Brazilian floating oil platform using Organic Rankine Cycles," Energy, Elsevier, vol. 88(C), pages 67-79.
    2. Cao, Yue & Rattner, Alexander S. & Dai, Yiping, 2018. "Thermoeconomic analysis of a gas turbine and cascaded CO2 combined cycle using thermal oil as an intermediate heat-transfer fluid," Energy, Elsevier, vol. 162(C), pages 1253-1268.
    3. Allahyarzadeh-Bidgoli, Ali & Salviano, Leandro Oliveira & Dezan, Daniel Jonas & de Oliveira Junior, Silvio & Yanagihara, Jurandir Itizo, 2018. "Energy optimization of an FPSO operating in the Brazilian Pre-salt region," Energy, Elsevier, vol. 164(C), pages 390-399.
    4. Jiang, Xingxing & Li, Shuxia & Zhang, Lina, 2012. "Sensitivity analysis of gas production from Class I hydrate reservoir by depressurization," Energy, Elsevier, vol. 39(1), pages 281-285.
    5. Walnum, Harald Taxt & Nekså, Petter & Nord, Lars O. & Andresen, Trond, 2013. "Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions," Energy, Elsevier, vol. 59(C), pages 513-520.
    6. Aboelazayem, Omar & El-Gendy, Nour Sh. & Abdel-Rehim, Ahmed A. & Ashour, Fatma & Sadek, Mohamed A., 2018. "Biodiesel production from castor oil in Egypt: Process optimisation, kinetic study, diesel engine performance and exhaust emissions analysis," Energy, Elsevier, vol. 157(C), pages 843-852.
    7. Nord, Lars O. & Martelli, Emanuele & Bolland, Olav, 2014. "Weight and power optimization of steam bottoming cycle for offshore oil and gas installations," Energy, Elsevier, vol. 76(C), pages 891-898.
    8. Barbosa, Yuri M. & da Silva, Julio A.M. & Junior, Silvio de O. & Torres, Ednildo A., 2018. "Performance assessment of primary petroleum production cogeneration plants," Energy, Elsevier, vol. 160(C), pages 233-244.
    9. Xia, Guanghui & Sun, Qingxuan & Cao, Xu & Wang, Jiangfeng & Yu, Yizhao & Wang, Laisheng, 2014. "Thermodynamic analysis and optimization of a solar-powered transcritical CO2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied n," Energy, Elsevier, vol. 66(C), pages 643-653.
    10. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2017. "Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model," Energy, Elsevier, vol. 118(C), pages 231-245.
    11. Ghorbani, Bahram & Shirmohammadi, Reza & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2018. "Structural, operational and economic optimization of cryogenic natural gas plant using NSGAII two-objective genetic algorithm," Energy, Elsevier, vol. 159(C), pages 410-428.
    12. Tahouni, Nassim & Khoshchehreh, Rezvaneh & Panjeshahi, M. Hassan, 2014. "Debottlenecking of condensate stabilization unit in a gas refinery," Energy, Elsevier, vol. 77(C), pages 742-751.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xiaojuan & Wu, Xinghong & Wu, Yan & Wang, Yufei, 2023. "Energy system design of offshore natural gas hydrates mining platforms considering multi-period floating wind farm optimization and production profile fluctuation," Energy, Elsevier, vol. 265(C).
    2. Allahyarzadeh-Bidgoli, Ali & Yanagihara, Jurandir Itizo, 2023. "Energy efficiency, sustainability, and operating cost optimization of an FPSO with CCUS: An innovation in CO2 compression and injection systems," Energy, Elsevier, vol. 267(C).
    3. Han, Yongming & Wu, Hao & Geng, Zhiqiang & Zhu, Qunxiong & Gu, Xiangbai & Yu, Bin, 2020. "Review: Energy efficiency evaluation of complex petrochemical industries," Energy, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    2. Nami, Hossein & Ertesvåg, Ivar S. & Agromayor, Roberto & Riboldi, Luca & Nord, Lars O., 2018. "Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - Energy and exergy analysis," Energy, Elsevier, vol. 165(PB), pages 1060-1071.
    3. Vidoza, Jorge A. & Andreasen, Jesper Graa & Haglind, Fredrik & dos Reis, Max M.L. & Gallo, Waldyr, 2019. "Design and optimization of power hubs for Brazilian off-shore oil production units," Energy, Elsevier, vol. 176(C), pages 656-666.
    4. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    5. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2021. "Multi-objective optimization of a novel offshore CHP plant based on a 3E analysis," Energy, Elsevier, vol. 224(C).
    6. M. Montañés, Rubén & Hagen, Brede & Deng, Han & Skaugen, Geir & Morin, Nicolas & Andersen, Marius & J. Mazzetti, Marit, 2023. "Design optimization of compact gas turbine and steam combined cycles for combined heat and power production in a FPSO system–A case study," Energy, Elsevier, vol. 282(C).
    7. Zhang, Ruiyuan & Su, Wen & Lin, Xinxing & Zhou, Naijun & Zhao, Li, 2020. "Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines," Energy, Elsevier, vol. 209(C).
    8. Li, Zhuochao & Zhang, Haoran & Meng, Jing & Long, Yin & Yan, Yamin & Li, Meixuan & Huang, Zhongliang & Liang, Yongtu, 2020. "Reducing carbon footprint of deep-sea oil and gas field exploitation by optimization for Floating Production Storage and Offloading," Applied Energy, Elsevier, vol. 261(C).
    9. Nguyen, Tuong-Van & Voldsund, Mari & Breuhaus, Peter & Elmegaard, Brian, 2016. "Energy efficiency measures for offshore oil and gas platforms," Energy, Elsevier, vol. 117(P2), pages 325-340.
    10. Flórez-Orrego, Daniel & Albuquerque, Cyro & da Silva, Julio A.M. & Freire, Ronaldo Lucas Alkmin & de Oliveira Junior, Silvio, 2021. "Optimal design of power hubs for offshore petroleum platforms," Energy, Elsevier, vol. 235(C).
    11. Li, Shunxi & Su, Bowen & St-Pierre, David L. & Sui, Pang-Chieh & Zhang, Guofang & Xiao, Jinsheng, 2017. "Decision-making of compressed natural gas station siting for public transportation: Integration of multi-objective optimization, fuzzy evaluating, and radar charting," Energy, Elsevier, vol. 140(P1), pages 11-17.
    12. Mazzetti, Marit J. & Hagen, Brede A.L. & Skaugen, Geir & Lindqvist, Karl & Lundberg, Steinar & Kristensen, Oddrun A., 2021. "Achieving 50% weight reduction of offshore steam bottoming cycles," Energy, Elsevier, vol. 230(C).
    13. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    14. Tomków, Łukasz & Cholewiński, Maciej, 2015. "Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption – ORC (organic Rankine cycle)," Energy, Elsevier, vol. 87(C), pages 645-653.
    15. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    16. Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
    17. Martelli, Emanuele & Freschini, Marco & Zatti, Matteo, 2020. "Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming," Applied Energy, Elsevier, vol. 267(C).
    18. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    19. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    20. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:927-942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.