IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v222y2018icp515-529.html
   My bibliography  Save this article

Renewed sanitation technology: A highly efficient faecal-sludge gasification–solid oxide fuel cell power plant

Author

Listed:
  • Recalde, Mayra
  • Woudstra, Theo
  • Aravind, P.V.

Abstract

Sustainable development goals for 2030 aim at the extensive reduction of the global sanitation breach; this might be achieved by renewed sanitation technologies and while providing sanitation recover valuable products such as energy. Consequently, this work presents a gasification–solid oxide fuel cell (SOFC) power plant that was configured for high-efficiency energy recovery from faecal sludge. The main limitations of faecal sludge gasification are the production of impurities, such as tar, and the high energy requirements for both the endothermic gasification process and removing the high moisture content in the feedstock. However, results from this work indicate that a superheated steam dryer combined with an indirectly heated multistage gasifier and a gas-cleaning unit can overcome the mentioned limitations. The external heat for the gasifier is supplied by the process heat available and a microwave plasma torch, and there is sufficient heat to drive a micro steam turbine. Thermodynamic calculations indicated that the plant could reach a net electrical efficiency of the order of 65%. As a result, a gasification–SOFC power plant is more suitable for energy recovery than any other process such as biochar production by pyrolysis; hence, it might become a technology that is financially feasible and can be used globally for sanitation purposes.

Suggested Citation

  • Recalde, Mayra & Woudstra, Theo & Aravind, P.V., 2018. "Renewed sanitation technology: A highly efficient faecal-sludge gasification–solid oxide fuel cell power plant," Applied Energy, Elsevier, vol. 222(C), pages 515-529.
  • Handle: RePEc:eee:appene:v:222:y:2018:i:c:p:515-529
    DOI: 10.1016/j.apenergy.2018.03.175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918305257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Facchinetti, Emanuele & Gassner, Martin & D’Amelio, Matilde & Marechal, François & Favrat, Daniel, 2012. "Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass," Energy, Elsevier, vol. 41(1), pages 408-419.
    2. Kang, Sanggyu & Ahn, Kook-Young, 2017. "Dynamic modeling of solid oxide fuel cell and engine hybrid system for distributed power generation," Applied Energy, Elsevier, vol. 195(C), pages 1086-1099.
    3. Eveloy, Valérie, 2012. "Numerical analysis of an internal methane reforming solid oxide fuel cell with fuel recycling," Applied Energy, Elsevier, vol. 93(C), pages 107-115.
    4. Manara, P. & Zabaniotou, A., 2012. "Towards sewage sludge based biofuels via thermochemical conversion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2566-2582.
    5. Santhanam, S. & Schilt, C. & Turker, B. & Woudstra, T. & Aravind, P.V., 2016. "Thermodynamic modeling and evaluation of high efficiency heat pipe integrated biomass Gasifier–Solid Oxide Fuel Cells–Gas Turbine systems," Energy, Elsevier, vol. 109(C), pages 751-764.
    6. Henriksen, Ulrik & Ahrenfeldt, Jesper & Jensen, Torben Kvist & Gøbel, Benny & Bentzen, Jens Dall & Hindsgaul, Claus & Sørensen, Lasse Holst, 2006. "The design, construction and operation of a 75kW two-stage gasifier," Energy, Elsevier, vol. 31(10), pages 1542-1553.
    7. Danso-Boateng, E. & Holdich, R.G. & Shama, G. & Wheatley, A.D. & Sohail, M. & Martin, S.J., 2013. "Kinetics of faecal biomass hydrothermal carbonisation for hydrochar production," Applied Energy, Elsevier, vol. 111(C), pages 351-357.
    8. Choi, Young-Kon & Cho, Min-Hwan & Kim, Joo-Sik, 2015. "Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal," Energy, Elsevier, vol. 91(C), pages 160-167.
    9. Liu, Ming & Woudstra, T. & Promes, E.J.O. & Restrepo, S.Y.G. & Aravind, P.V., 2014. "System development and self-sustainability analysis for upgrading human waste to power," Energy, Elsevier, vol. 68(C), pages 377-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaoling & Gao, Yuan & Zhang, Shuai & Sun, Hao & Li, Jie & Shao, Tao, 2019. "Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters," Applied Energy, Elsevier, vol. 243(C), pages 132-144.
    2. Zhang, Jifu & Cui, Peizhe & Yang, Sheng & Zhou, Yaru & Du, Wei & Wang, Yinglong & Deng, Chengwei & Wang, Shuai, 2023. "Thermodynamic analysis of SOFC–CCHP system based on municipal sludge plasma gasification with carbon capture," Applied Energy, Elsevier, vol. 336(C).
    3. Jarosław Milewski & Arkadiusz Szczęśniak & Piotr Lis & Łukasz Szabłowski & Olaf Dybiński & Kamil Futyma & Arkadiusz Sieńko & Artur Olszewski & Tomasz Sęk & Władysław Kryłłowicz, 2024. "Selecting Cycle and Design Parameters of a Super Critical CO 2 Cycle for a 180 kW Biogas Engine," Energies, MDPI, vol. 17(12), pages 1-21, June.
    4. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    2. Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi & Lee, Dong Won, 2017. "Design and analysis of compact hotbox for solid oxide fuel cell based 1kW-class power generation system," Applied Energy, Elsevier, vol. 208(C), pages 620-636.
    3. Alvaro Fernandes & Joerg Brabandt & Oliver Posdziech & Ali Saadabadi & Mayra Recalde & Liyuan Fan & Eva O. Promes & Ming Liu & Theo Woudstra & Purushothaman Vellayan Aravind, 2018. "Design, Construction, and Testing of a Gasifier-Specific Solid Oxide Fuel Cell System," Energies, MDPI, vol. 11(8), pages 1-17, July.
    4. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    5. Baldinelli, Arianna & Barelli, Linda & Bidini, Gianni, 2015. "Performance characterization and modelling of syngas-fed SOFCs (solid oxide fuel cells) varying fuel composition," Energy, Elsevier, vol. 90(P2), pages 2070-2084.
    6. Choi, Min-Jun & Jeong, Yong-Seong & Kim, Joo-Sik, 2021. "Air gasification of polyethylene terephthalate using a two-stage gasifier with active carbon for the production of H2 and CO," Energy, Elsevier, vol. 223(C).
    7. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    8. Kupecki, Jakub & Motylinski, Konrad & Milewski, Jaroslaw, 2018. "Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model," Applied Energy, Elsevier, vol. 227(C), pages 198-205.
    9. Mingfei Li & Jingjing Wang & Zhengpeng Chen & Xiuyang Qian & Chuanqi Sun & Di Gan & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2024. "A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies," Energies, MDPI, vol. 17(5), pages 1-30, February.
    10. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    11. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    12. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    13. Setyawan, M. Ismail Bagus & Dafiqurrohman, Hafif & Akbar, Maha Hidayatullah & Surjosatyo, Adi, 2021. "Characterizing a two-stage downdraft biomass gasifier using a representative particle model," Renewable Energy, Elsevier, vol. 173(C), pages 750-767.
    14. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    15. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    16. Parihar, Amit Kumar Singh & Hammer, Thomas & Sridhar, G., 2015. "Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas," Renewable Energy, Elsevier, vol. 74(C), pages 875-883.
    17. Kim, Jae-Kyung & Jeong, Yong-Seong & Kim, Jong-Woo & Kim, Joo-Sik, 2023. "Two-stage thermochemical conversion of polyethylene terephthalate using steam to produce a clean and H2- and CO-rich syngas," Energy, Elsevier, vol. 276(C).
    18. Huang, Yu-Fong & Shih, Chun-Hao & Chiueh, Pei-Te & Lo, Shang-Lien, 2015. "Microwave co-pyrolysis of sewage sludge and rice straw," Energy, Elsevier, vol. 87(C), pages 638-644.
    19. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
    20. Lin, Chiou-Liang & Chou, Jing-Dong & Iu, Chi-Hou, 2020. "Effects of second-stage bed materials on hydrogen production in the syngas of a two-stage gasification process," Renewable Energy, Elsevier, vol. 154(C), pages 903-912.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:222:y:2018:i:c:p:515-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.