IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp107-115.html
   My bibliography  Save this article

Numerical analysis of an internal methane reforming solid oxide fuel cell with fuel recycling

Author

Listed:
  • Eveloy, Valérie

Abstract

The development of solid oxide fuel cell (SOFC) systems capable of direct internal reforming (DIR) of methane is being actively pursued. However, a major challenge with current state-of-the-art nickel-based anodes is their propensity to form deteriorous carbon deposits in DIR, unless excess steam is introduced in the fuel. Reduced fuel humidification levels are desirable from the viewpoints of cell performance, reliability and plant economics. This study explores the use of partial recycling of the anode exhaust as a mitigation strategy against carbon deposits at fuel steam-to-carbon ratios less than unity. Using a detailed computational fluid dynamics (CFD) model which couples momentum, heat, mass and charge transport with electrochemical and chemical reactions, the spatial extent of carbon deposition within a SOFC anode is analyzed by accounting for both the cracking and Boudouard reactions, for several fuel humidification and recycling conditions. At temperatures of approximately 1173K and for inlet fuel molar H2O/CH4 ratios between 0.5 and 1, 50% (mass%) fuel recycling is found to be an effective strategy against carbon deposition. For lower recycling levels at the same fuel compositions, or lower fuel humidification levels (regardless of the recycling level), fuel recycling reduces the risk of coking, but does not eliminate it. The analyses presented suggest that recycling of the anodic fuel stream could help extend the operational range of DIR-SOFCs to lower fuel humidification levels than typically considered, with reduced risks of carbon deposits, while reducing system cost and complexity in terms of steam production. For dry or weakly humidified fuels, additional mitigation strategies would be required.

Suggested Citation

  • Eveloy, Valérie, 2012. "Numerical analysis of an internal methane reforming solid oxide fuel cell with fuel recycling," Applied Energy, Elsevier, vol. 93(C), pages 107-115.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:107-115
    DOI: 10.1016/j.apenergy.2010.10.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261910004605
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santin, Marco & Traverso, Alberto & Magistri, Loredana, 2009. "Liquid fuel utilization in SOFC hybrid systems," Applied Energy, Elsevier, vol. 86(10), pages 2204-2212, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaccaria, V. & Tucker, D. & Traverso, A., 2017. "Operating strategies to minimize degradation in fuel cell gas turbine hybrids," Applied Energy, Elsevier, vol. 192(C), pages 437-445.
    2. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    3. Komatsu, Y. & Brus, G. & Kimijima, S. & Szmyd, J.S., 2014. "The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage," Applied Energy, Elsevier, vol. 115(C), pages 352-359.
    4. Ribeirinha, P. & Abdollahzadeh, M. & Boaventura, M. & Mendes, A., 2017. "H2 production with low carbon content via MSR in packed bed membrane reactors for high-temperature polymeric electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 409-419.
    5. repec:eee:appene:v:205:y:2017:i:c:p:822-833 is not listed on IDEAS
    6. Wang, Baoxuan & Zhu, Jiang & Lin, Zijing, 2016. "A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics," Applied Energy, Elsevier, vol. 176(C), pages 1-11.
    7. Al-Masri, A. & Peksen, M. & Blum, L. & Stolten, D., 2014. "A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions," Applied Energy, Elsevier, vol. 135(C), pages 539-547.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:107-115. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.