IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v176y2016icp1-11.html
   My bibliography  Save this article

A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics

Author

Listed:
  • Wang, Baoxuan
  • Zhu, Jiang
  • Lin, Zijing

Abstract

Solid oxide fuel cell (SOFC) fueled by methane with low steam content is desirable from the energy efficiency and power density point of view. Improved understanding about the low steam methane fuel operation is required for advancing the technology. A rigorous and comprehensive multiphysics model for methane fueled SOFCs is described for the first time. The model considers explicitly the detailed balance of local electrical potentials for methane fueled SOFCs to ensure mathematical rigor. A commonly overlooked but important difference between the Nernst potential and the open circuit voltage (OCV) is critically analyzed. Numerical simulations with this multiphysics model show that OCV for low-steam methane fuel is sensitive to the methane steam reforming (MSR) kinetics. The steam reaction order and activation energy of MSR with low-steam methane are then determined accurately by a systematic comparison of the theoretical and experimental OCVs. Moreover, several literature MSR models are shown to be invalid for low steam methane. The multiphysics model and the deduced MSR kinetics are capable of producing the experimental I–V relations without any additional parameter adjustment, demonstrating the predictive power of the theoretical method.

Suggested Citation

  • Wang, Baoxuan & Zhu, Jiang & Lin, Zijing, 2016. "A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics," Applied Energy, Elsevier, vol. 176(C), pages 1-11.
  • Handle: RePEc:eee:appene:v:176:y:2016:i:c:p:1-11
    DOI: 10.1016/j.apenergy.2016.05.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916306420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eveloy, Valérie, 2012. "Numerical analysis of an internal methane reforming solid oxide fuel cell with fuel recycling," Applied Energy, Elsevier, vol. 93(C), pages 107-115.
    2. Menon, Vikram & Banerjee, Aayan & Dailly, Julian & Deutschmann, Olaf, 2015. "Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming," Applied Energy, Elsevier, vol. 149(C), pages 161-175.
    3. Andersson, Martin & Yuan, Jinliang & Sundén, Bengt, 2010. "Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells," Applied Energy, Elsevier, vol. 87(5), pages 1461-1476, May.
    4. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    5. Yan, Min & Zeng, Min & Chen, Qiuyang & Wang, Qiuwang, 2012. "Numerical study on carbon deposition of SOFC with unsteady state variation of porosity," Applied Energy, Elsevier, vol. 97(C), pages 754-762.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jiang & Lin, Zijing, 2018. "Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions," Applied Energy, Elsevier, vol. 231(C), pages 22-28.
    2. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    3. Fang, Xiurong & Lin, Zijing, 2018. "Numerical study on the mechanical stress and mechanical failure of planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 229(C), pages 63-68.
    4. Kupecki, Jakub & Motylinski, Konrad & Milewski, Jaroslaw, 2018. "Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model," Applied Energy, Elsevier, vol. 227(C), pages 198-205.
    5. Li, Ang & Song, Ce & Lin, Zijing, 2017. "A multiphysics fully coupled modeling tool for the design and operation analysis of planar solid oxide fuel cell stacks," Applied Energy, Elsevier, vol. 190(C), pages 1234-1244.
    6. van Biert, L. & Godjevac, M. & Visser, K. & Aravind, P.V., 2019. "Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments," Applied Energy, Elsevier, vol. 250(C), pages 976-990.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    2. Komatsu, Y. & Brus, G. & Kimijima, S. & Szmyd, J.S., 2014. "The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage," Applied Energy, Elsevier, vol. 115(C), pages 352-359.
    3. Al-Masri, A. & Peksen, M. & Blum, L. & Stolten, D., 2014. "A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions," Applied Energy, Elsevier, vol. 135(C), pages 539-547.
    4. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    5. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
    6. Putilov, L.P. & Demin, A.K. & Tsidilkovski, V.I. & Tsiakaras, P., 2019. "Theoretical modeling of the gas humidification effect on the characteristics of proton ceramic fuel cells," Applied Energy, Elsevier, vol. 242(C), pages 1448-1459.
    7. He, Zhongjie & Li, Hua & Birgersson, E., 2014. "Correlating variability of modeling parameters with non-isothermal stack performance: Monte Carlo simulation of a portable 3D planar solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 136(C), pages 560-575.
    8. Min Yan & Pei Fu & Qiuyang Chen & Qiuwang Wang & Min Zeng & Jaideep Pandit, 2014. "Electrical Performance and Carbon Deposition Differences between the Bi-Layer Interconnector and Conventional Straight Interconnector Solid Oxide Fuel Cell," Energies, MDPI, vol. 7(7), pages 1-13, July.
    9. Shao, Qian & Gao, Enlai & Mara, Thierry & Hu, Heng & Liu, Tong & Makradi, Ahmed, 2020. "Global sensitivity analysis of solid oxide fuel cells with Bayesian sparse polynomial chaos expansions," Applied Energy, Elsevier, vol. 260(C).
    10. Kupecki, Jakub & Motylinski, Konrad & Milewski, Jaroslaw, 2018. "Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model," Applied Energy, Elsevier, vol. 227(C), pages 198-205.
    11. Terracciano, Anthony Carmine & Vasu, Subith S. & Orlovskaya, Nina, 2016. "Design and development of a porous heterogeneous combustor for efficient heat production by combustion of liquid and gaseous fuels," Applied Energy, Elsevier, vol. 179(C), pages 228-236.
    12. Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
    13. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
    14. Aslannejad, H. & Barelli, L. & Babaie, A. & Bozorgmehri, S., 2016. "Effect of air addition to methane on performance stability and coking over NiO–YSZ anodes of SOFC," Applied Energy, Elsevier, vol. 177(C), pages 179-186.
    15. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    16. Fardadi, Mahshid & McLarty, Dustin F. & Jabbari, Faryar, 2016. "Investigation of thermal control for different SOFC flow geometries," Applied Energy, Elsevier, vol. 178(C), pages 43-55.
    17. He, Zhongjie & Birgersson, E. & Li, Hua, 2014. "Reduced non-isothermal model for the planar solid oxide fuel cell and stack," Energy, Elsevier, vol. 70(C), pages 478-492.
    18. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    19. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    20. Kim, Taebeen & Kang, Sanggyu, 2023. "Numerical analysis of a highly efficient cascade solid oxide fuel cell system with a fuel regenerator," Applied Energy, Elsevier, vol. 341(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:176:y:2016:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.