IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v300y2024ics0360544224014105.html
   My bibliography  Save this article

Study of dynamic performance of PEMFC-based CCHP system in a data center based on real-time load and a novel synergistic control method with variable working conditions

Author

Listed:
  • Zhang, Teng
  • Li, Ming-Jia
  • Ni, Jing-Wei
  • Qian, Cun-Cun

Abstract

In this paper, the dynamic performance of Proton Exchange Membrane Fuel Cell-based Combined Cooling Heating and Power (PEMFC-based CCHP) system combined with a data center real-time load is studied. A novel synergistic control method is proposed to achieve optimization of energy flow between system units under fluctuating load. First, the off-design working condition models of PEMFC-based CCHP system are constructed. The delay in the changes of data center temperature is considered because of the thermal inertia under dynamic conditions. Second, the dynamic performance of PEMFC-based CCHP system to step changes of data center load is analyzed. Third, to further reveal the energy flow between units, the units output under varying load conditions are compared under the constraints of power and refrigeration supply. Finally, the dynamic performance of PEMFC-based CCHP system under the traditional control method of following electric load are revealed. A novel synergistic control method for the PEMFC-based CCHP system is proposed by refining the traditional method to optimize the energy flow between units. The result presents that the average energy efficiency reaches 78.29 %. Compared with the following electric load method, the energy efficiency is increased by 6.02 %. The response time of synergistic control method is 27.0 ms. Improved energy efficiency and fast response have been achieved.

Suggested Citation

  • Zhang, Teng & Li, Ming-Jia & Ni, Jing-Wei & Qian, Cun-Cun, 2024. "Study of dynamic performance of PEMFC-based CCHP system in a data center based on real-time load and a novel synergistic control method with variable working conditions," Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224014105
    DOI: 10.1016/j.energy.2024.131637
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131637?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224014105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.