IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v321y2025ics0360544225009430.html
   My bibliography  Save this article

Enhancing methanol-to-power: A comprehensive evaluation of an integrated methanol-reforming, high-temperature proton exchange membrane fuel cell, and organic Rankine cycle system

Author

Listed:
  • Taweekayujan, Supawat
  • Prasertcharoensuk, Phuet
  • Chen, Yong-Song
  • Arpornwichanop, Amornchai

Abstract

This study proposes an innovative hybrid system integrating sorption-enhanced chemical looping reforming of methanol, a high-temperature proton exchange membrane fuel cell, and an organic Rankine cycle to enhance energy efficiency and sustainability. The novelty lies in combining these subsystems to perform a comprehensive analysis for maximizing hydrogen production, recovering high-quality waste heat, and improving economic viability by leveraging advanced thermodynamic and exergoecnomic optimization. A detailed energy, exergy, and exergoeconomic analysis was conducted using Aspen Plus simulations, revealing that irreversibilities in the afterburner, stack fuel cell, and fuel reactor contribute to 73.7 % of the total exergy destruction. Exergoeconomic analysis identified the evaporator as the costliest component due to significant exergy losses. Parametric analyses demonstrated that increasing catalyst and absorbent molar flow rate ratios enhanced net power generation but increased costs. For the fuel cell section, optimizing the oxygen flowrate ratio, current density, and temperature improved performance and reduced the costs rate, though excessive current density led to efficiency losses. Higher fuel cell temperatures and optimized intermediate pressures in the organic Rankine cycle system improved efficiency and decreased costs. This study provides valuable insights for designing and optimizing advanced energy systems combining methanol reforming, fuel cell, and organic Rankine cycle, emphasizing the importance of balancing variables for overall system efficiency and economic viability.

Suggested Citation

  • Taweekayujan, Supawat & Prasertcharoensuk, Phuet & Chen, Yong-Song & Arpornwichanop, Amornchai, 2025. "Enhancing methanol-to-power: A comprehensive evaluation of an integrated methanol-reforming, high-temperature proton exchange membrane fuel cell, and organic Rankine cycle system," Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225009430
    DOI: 10.1016/j.energy.2025.135301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225009430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Xinyu & Du, Banghua & Zhu, Wenchao & Yang, Yang & Xie, Changjun & Tu, Zhengkai & Zhao, Bo & Zhang, Leiqi & Wang, Jianqiang & Yang, Zheng, 2024. "Multi-criteria assessment of an auxiliary energy system for desalination plant based on PEMFC-ORC combined heat and power," Energy, Elsevier, vol. 290(C).
    2. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    3. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    4. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    5. Satanphol, K. & Pridasawas, W. & Suphanit, B., 2017. "A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery," Energy, Elsevier, vol. 123(C), pages 326-339.
    6. Bing Xu & Dongxu Li & Zheshu Ma & Meng Zheng & Yanju Li, 2021. "Thermodynamic Optimization of a High Temperature Proton Exchange Membrane Fuel Cell for Fuel Cell Vehicle Applications," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    7. Crivellari, Anna & Cozzani, Valerio & Dincer, Ibrahim, 2019. "Exergetic and exergoeconomic analyses of novel methanol synthesis processes driven by offshore renewable energies," Energy, Elsevier, vol. 187(C).
    8. Chen, Zhijie & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & E, Jiaqiang, 2023. "Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell," Energy, Elsevier, vol. 278(PB).
    9. Li, Na & Cui, Xiaoti & Zhu, Jimin & Zhou, Mengfan & Liso, Vincenzo & Cinti, Giovanni & Sahlin, Simon Lennart & Araya, Samuel Simon, 2023. "A review of reformed methanol-high temperature proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    10. Xie, Nan & Xiao, Zhenyu & Du, Wei & Deng, Chengwei & Liu, Zhiqiang & Yang, Sheng, 2023. "Thermodynamic and exergoeconomic analysis of a proton exchange membrane fuel cell/absorption chiller CCHP system based on biomass gasification," Energy, Elsevier, vol. 262(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Shiyi & Leng, Shuang & Xie, Junen & Liu, Zekuan & Li, Chengjie & Wang, Jingyi & Chen, Zhengjian & Liao, Mei & Qin, Jiang, 2025. "Performance evaluation and optimization of a distributed generation system integrating high-temperature proton exchange membrane fuel cell and recuperative-regenerative Organic Rankine Cycle," Energy, Elsevier, vol. 319(C).
    2. Cai, Benan & Wang, Rong & Gao, Ruihang & Che, Xunjian & Zhang, Zhongnong & Wang, Haijun & Cai, Weihua, 2025. "Performance analysis and multi-objective optimization of a combined seawater desalination and power system based on high-temperature PEMFC and externally fired gas turbine," Energy, Elsevier, vol. 321(C).
    3. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    4. Cai, Benan & Gao, Ruihang & Zhao, Yuqi & Wang, Rong & Che, Xunjian & Tian, Jiameng & Cai, Weihua, 2024. "Comprehensive performance evaluation and advanced exergy analysis of the low-temperature proton exchange membrane fuel cell and spray flash desalination coupled system," Energy, Elsevier, vol. 313(C).
    5. Lu, Xinyu & Chang, Huawei & Tu, Zhengkai & Xie, Changjun, 2025. "Performance evaluation of a novel off-grid CCHP system based on a semi-closed-loop PEMEC-PEMFC," Energy, Elsevier, vol. 321(C).
    6. Ma, Zhenxi & Zhang, Naiji & Wu, Wei & Sun, Li & Zhang, Xiaosong & Cai, Liang, 2024. "Carbone-neutral oriented methanol-reforming HT-PEMFC cogeneration based on absorption power refrigeration cycle," Energy, Elsevier, vol. 308(C).
    7. Gao, Ruihang & Cai, Benan & Zhao, Yuqi & Wang, Rong & Che, Xunjian & Wang, Haijun & Cai, Weihua, 2025. "Advanced performance analysis and life cycle assessment of a coupled system: MSR, LT-PEMFC and spray flash desalination," Energy, Elsevier, vol. 323(C).
    8. Zhang, Teng & Li, Ming-Jia & Ni, Jing-Wei & Qian, Cun-Cun, 2024. "Study of dynamic performance of PEMFC-based CCHP system in a data center based on real-time load and a novel synergistic control method with variable working conditions," Energy, Elsevier, vol. 300(C).
    9. Cheng, Kun & Wang, Jinshuai & Shao, Yunlin & Fu, Lianyan & Wu, Zhengxiang & Zhang, Yuxin & Yang, Jiahao & Wu, Kaiyao & Zhang, Yang & Chen, Weidong & Huang, Xin & Ma, Chuan & Ran, Jingyu, 2024. "Techno-economic assessment and multi-objective optimization of a hybrid methanol-reforming proton exchange membrane fuel cell system with cascading energy utilization," Energy, Elsevier, vol. 313(C).
    10. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    11. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    12. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Yu, Zhibin & Chen, Jianyong & Chen, Ying, 2024. "Multi-objective optimization of proton exchange membrane fuel cell based methanol-solar-to-X hybrid energy systems," Applied Energy, Elsevier, vol. 373(C).
    13. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
    14. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    15. Wiranarongkorn, Kunlanan & Im-orb, Karittha & Panpranot, Joongjai & Maréchal, François & Arpornwichanop, Amornchai, 2021. "Exergy and exergoeconomic analyses of sustainable furfural production via reactive distillation," Energy, Elsevier, vol. 226(C).
    16. Xie, Peilin & Zhou, Fan & Tan, Sen & Liso, Vincenzo & Sahlin, Simon Lennart, 2025. "Development of a two-layer control and management system for a residential microgrid with HT-PEMFC-based micro-CHP," Applied Energy, Elsevier, vol. 381(C).
    17. Shi, Zhiwei & Tian, Xinghua & Peng, Qingguo & Huang, Zhixin & Teng, Peng & Yin, Ruixue, 2025. "Effects analysis of hydrogen production from methanol reforming of dual-U reactor for fuel-cell hybrid electric vehicles," Energy, Elsevier, vol. 318(C).
    18. Russo, Danilo & Portarapillo, Maria & Turco, Maria & Di Benedetto, Almerinda, 2025. "Towards H2-free shipboard storage: Energetic and risk analysis of oxidative methanol steam reforming in integrated fuel cell systems," Energy, Elsevier, vol. 320(C).
    19. xu, Guiying & Qian, Haifeng & Zhang, Qi & R Alsenani, Theyab & Bouzgarrou, Souhail & Alturise, Fahad, 2024. "Integration of biomass gasification and O2/H2 separation membranes for H2 production/separation with inherent CO2 capture: Techno-economic evaluation and artificial neural network based multi-objectiv," Renewable Energy, Elsevier, vol. 224(C).
    20. Huo, Erguang & Hu, Zheng & Wang, Shukun & Xin, Liyong & Bai, Mengna, 2022. "Thermal decomposition and interaction mechanism of HFC-227ea/n-hexane as a zeotropic working fluid for organic Rankine cycle," Energy, Elsevier, vol. 246(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225009430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.