IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6035-d640822.html
   My bibliography  Save this article

Design and Pinch Analysis of a GFT Process for Production of Biojet Fuel from Biomass and Plastics

Author

Listed:
  • Alejandro López-Fernández

    (Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain)

  • David Bolonio

    (Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain)

  • Isabel Amez

    (Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain
    Laboratorio Oficial Madariaga, LOM (UPM Technical University of Madrid, Spain), C/Eric Kandel, 1 (TECNOGETAFE), Parque Científico y Tecnológico de la UPM, 28906 Getafe, Spain)

  • Blanca Castells

    (Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain
    Laboratorio Oficial Madariaga, LOM (UPM Technical University of Madrid, Spain), C/Eric Kandel, 1 (TECNOGETAFE), Parque Científico y Tecnológico de la UPM, 28906 Getafe, Spain)

  • Marcelo F. Ortega

    (Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain)

  • María-Jesús García-Martínez

    (Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain)

Abstract

Environmental problems are frequently related to energy use, estimated to grow at 1.6% per year until 2035. The transport sector accounts for 30% of energy demand and aviation is growing around 2.6% per year. Thus, low-emissions policies promote the use of sustainable aviation fuels. This work simulates a gasification and Fischer-Tropsch process to obtain biojet fuel from biomass and plastic waste. Syngas obtained through cogasification is purified by amine scrubbing and subjected to a Fischer-Tropsch process to produce hydrocarbons, which are upgraded for optimal fuel properties. Pinch analysis is applied to minimize energy usage, while Rankine cycles and a cooling tower are designed to cover the demand of electricity and cooling water. Results show that mass yields of the process towards biofuels are 13.06%, with an output of 1697.45 kg/h of biojet fuel. Density, kinematic viscosity, pour and flammability points and the lower calorific value of the biojet fuel comply with the ASTM D7566 standard. Pinch analysis allows to reduce 41.58% and 100% of cooling and heating demands, respectively, using biomass as renewable energy for heating. Moreover, steam generation covers 38.73% of the required electricity. The produced biojet fuel emits 20.14 g CO2eq /MJ and has a minimum selling price of 1.37 EUR/L.

Suggested Citation

  • Alejandro López-Fernández & David Bolonio & Isabel Amez & Blanca Castells & Marcelo F. Ortega & María-Jesús García-Martínez, 2021. "Design and Pinch Analysis of a GFT Process for Production of Biojet Fuel from Biomass and Plastics," Energies, MDPI, vol. 14(19), pages 1-31, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6035-:d:640822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6035/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6035/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jéssica Marcon Bressanin & Bruno Colling Klein & Mateus Ferreira Chagas & Marcos Djun Barbosa Watanabe & Isabelle Lobo de Mesquita Sampaio & Antonio Bonomi & Edvaldo Rodrigo de Morais & Otávio Cavalet, 2020. "Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries," Energies, MDPI, vol. 13(17), pages 1-22, September.
    2. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2020. "A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands," Energies, MDPI, vol. 13(8), pages 1-35, April.
    3. Burra, K.G. & Gupta, A.K., 2018. "Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes," Applied Energy, Elsevier, vol. 220(C), pages 408-418.
    4. Praepilas Dujjanutat & Arthit Neramittagapong & Pakawadee Kaewkannetra, 2019. "Optimization of Bio-Hydrogenated Kerosene from Refined Palm Oil by Catalytic Hydrocracking," Energies, MDPI, vol. 12(16), pages 1-15, August.
    5. Vela-García, Nicolas & Bolonio, David & Mosquera, Ana María & Ortega, Marcelo F. & García-Martínez, María-Jesús & Canoira, Laureano, 2020. "Techno-economic and life cycle assessment of triisobutane production and its suitability as biojet fuel," Applied Energy, Elsevier, vol. 268(C).
    6. Maria João Regufe & Ana Pereira & Alexandre F. P. Ferreira & Ana Mafalda Ribeiro & Alírio E. Rodrigues, 2021. "Current Developments of Carbon Capture Storage and/or Utilization–Looking for Net-Zero Emissions Defined in the Paris Agreement," Energies, MDPI, vol. 14(9), pages 1-26, April.
    7. Olga Pleyer & Dan Vrtiška & Petr Straka & Aleš Vráblík & Jan Jenčík & Pavel Šimáček, 2020. "Hydrocracking of a Heavy Vacuum Gas Oil with Fischer–Tropsch Wax," Energies, MDPI, vol. 13(20), pages 1-16, October.
    8. María Pilar González-Vázquez & Fernando Rubiera & Covadonga Pevida & Daniel T. Pio & Luís A.C. Tarelho, 2021. "Thermodynamic Analysis of Biomass Gasification Using Aspen Plus: Comparison of Stoichiometric and Non-Stoichiometric Models," Energies, MDPI, vol. 14(1), pages 1-17, January.
    9. Vera Marcantonio & Danilo Monarca & Mauro Villarini & Andrea Di Carlo & Luca Del Zotto & Enrico Bocci, 2020. "Biomass Steam Gasification, High-Temperature Gas Cleaning, and SOFC Model: A Parametric Analysis," Energies, MDPI, vol. 13(22), pages 1-13, November.
    10. Zhang, Xuesong & Lei, Hanwu & Zhu, Lei & Qian, Moriko & Zhu, Xiaolu & Wu, Joan & Chen, Shulin, 2016. "Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions," Applied Energy, Elsevier, vol. 173(C), pages 418-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanouilidou, Elissavet & Mitkidou, Sophia & Agapiou, Agapios & Kokkinos, Nikolaos C., 2023. "Solid waste biomass as a potential feedstock for producing sustainable aviation fuel: A systematic review," Renewable Energy, Elsevier, vol. 206(C), pages 897-907.
    2. Jorge Eduardo Esquerre Verastegui & Andres López López & Roberto Adrián González Domínguez & Marco Antonio Zamora Antuñano & Carlos Vidal Dávila Ignacio & Raúl García García, 2024. "Production of Coconut Oil Bioturbosine without Water by Using Ultrasound as a Source of Energy and Ion Exchange for Its Purification," Energies, MDPI, vol. 17(3), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    2. Jacek Grams, 2022. "Upgrading of Lignocellulosic Biomass to Hydrogen-Rich Gas," Energies, MDPI, vol. 16(1), pages 1-5, December.
    3. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    4. Lei Han & Jinling Li & Chengtun Qu & Zhiguo Shao & Tao Yu & Bo Yang, 2022. "Recent Progress in Sludge Co-Pyrolysis Technology," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    5. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    6. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    7. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    8. Zhang, Shuping & Su, Yinhai & Xu, Dan & Zhu, Shuguang & Zhang, Houlei & Liu, Xinzhi, 2018. "Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk," Energy, Elsevier, vol. 149(C), pages 804-813.
    9. Wu, Junnan & Liao, Yanfen & Lin, Yan & Tian, Yunlong & Ma, Xiaoqian, 2019. "Study on thermal decomposition kinetics model of sewage sludge and wheat based on multi distributed activation energy," Energy, Elsevier, vol. 185(C), pages 795-803.
    10. Sara Maen Asaad & Abrar Inayat & Lisandra Rocha-Meneses & Farrukh Jamil & Chaouki Ghenai & Abdallah Shanableh, 2022. "Prospective of Response Surface Methodology as an Optimization Tool for Biomass Gasification Process," Energies, MDPI, vol. 16(1), pages 1-18, December.
    11. Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).
    12. Alberto Maria Gambelli, 2023. "CCUS Strategies as Most Viable Option for Global Warming Mitigation," Energies, MDPI, vol. 16(10), pages 1-4, May.
    13. Valentina Segneri & Jean Henry Ferrasse & Antonio Trinca & Giorgio Vilardi, 2022. "An Overview of Waste Gasification and Syngas Upgrading Processes," Energies, MDPI, vol. 15(17), pages 1-7, September.
    14. Diego Luna & Rafael Estevez, 2022. "Optimization of Biodiesel and Biofuel Process," Energies, MDPI, vol. 15(16), pages 1-4, August.
    15. Rachele Foffi & Elisa Savuto & Matteo Stante & Roberta Mancini & Katia Gallucci, 2022. "Study of Energy Valorization of Disposable Masks via Thermochemical Processes: Devolatilization Tests and Simulation Approach," Energies, MDPI, vol. 15(6), pages 1-24, March.
    16. Liu, Xuan & Burra, Kiran G. & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2020. "On deconvolution for understanding synergistic effects in co-pyrolysis of pinewood and polypropylene," Applied Energy, Elsevier, vol. 279(C).
    17. Bressanin, Jéssica Marcon & Guimarães, Henrique Real & Chagas, Mateus Ferreira & Sampaio, Isabelle Lobo de Mesquita & Klein, Bruno Colling & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Morais, E, 2021. "Advanced technologies for electricity production in the sugarcane value chain are a strategic option in a carbon reward policy context," Energy Policy, Elsevier, vol. 159(C).
    18. Smith, William R. & Tahir, Hamdah & Leal, Allan M.M., 2024. "Stoichiometric and non-stoichiometric methods for modeling gasification and other reaction equilibria: A review of their foundations and their interconvertibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    19. Ma, Wenchao & Liu, Bin & Zhang, Ruixue & Gu, Tianbao & Ji, Xiang & Zhong, Lei & Chen, Guanyi & Ma, Longlong & Cheng, Zhanjun & Li, Xiangping, 2018. "Co-upgrading of raw bio-oil with kitchen waste oil through fluid catalytic cracking (FCC)," Applied Energy, Elsevier, vol. 217(C), pages 233-240.
    20. Burra, Kiran Raj G. & Liu, Xuan & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2021. "Quantifying the sources of synergistic effects in co-pyrolysis of pinewood and polystyrene," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6035-:d:640822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.