IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4576-d408569.html
   My bibliography  Save this article

Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries

Author

Listed:
  • Jéssica Marcon Bressanin

    (School of Food Engineering (FEA), University of Campinas (UNICAMP), 13083-862 Campinas, Sao Paulo, Brazil
    Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil)

  • Bruno Colling Klein

    (Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil)

  • Mateus Ferreira Chagas

    (Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
    School of Chemical Engineering (FEQ), University of Campinas (UNICAMP), 13083-852 Campinas, Sao Paulo, Brazil)

  • Marcos Djun Barbosa Watanabe

    (School of Food Engineering (FEA), University of Campinas (UNICAMP), 13083-862 Campinas, Sao Paulo, Brazil
    Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil)

  • Isabelle Lobo de Mesquita Sampaio

    (School of Food Engineering (FEA), University of Campinas (UNICAMP), 13083-862 Campinas, Sao Paulo, Brazil
    Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil)

  • Antonio Bonomi

    (Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil)

  • Edvaldo Rodrigo de Morais

    (School of Food Engineering (FEA), University of Campinas (UNICAMP), 13083-862 Campinas, Sao Paulo, Brazil
    Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil)

  • Otávio Cavalett

    (School of Food Engineering (FEA), University of Campinas (UNICAMP), 13083-862 Campinas, Sao Paulo, Brazil
    Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
    Department of Energy and Process Engineering, Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU), NO-7034 Trondheim, Norway)

Abstract

Large-scale deployment of both biochemical and thermochemical routes for advanced biofuels production is seen as a key climate change mitigation option. This study addresses techno-economic and environmental aspects of advanced liquid biofuels production alternatives via biomass gasification and Fischer–Tropsch synthesis integrated to a typical sugarcane distillery. The thermochemical route comprises the conversion of the residual lignocellulosic fraction of conventional sugarcane (bagasse and straw), together with eucalyptus and energy-cane as emerging lignocellulosic biomass options. This work promotes an integrated framework to simulate the mass and energy balances of process alternatives and incorporates techno-economic analyses and sustainability assessment methods based on a life-cycle perspective. Results show that integrated biorefineries provide greenhouse gas emission reduction between 85–95% compared to the fossil equivalent, higher than that expected from a typical sugarcane biorefinery. When considering avoided emissions by cultivated area, biorefinery scenarios processing energy-cane are favored, however at lower economic performance. Thermochemical processes may take advantage of the integration with the typical sugarcane mills and novel biofuels policies (e.g., RenovaBio) to mitigate some of the risks linked to the implementation of new biofuel technologies.

Suggested Citation

  • Jéssica Marcon Bressanin & Bruno Colling Klein & Mateus Ferreira Chagas & Marcos Djun Barbosa Watanabe & Isabelle Lobo de Mesquita Sampaio & Antonio Bonomi & Edvaldo Rodrigo de Morais & Otávio Cavalet, 2020. "Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries," Energies, MDPI, vol. 13(17), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4576-:d:408569
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4576/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4576/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitriou, Ioanna & Goldingay, Harry & Bridgwater, Anthony V., 2018. "Techno-economic and uncertainty analysis of Biomass to Liquid (BTL) systems for transport fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 160-175.
    2. Santos, Catarina I. & Silva, Constança C. & Mussatto, Solange I. & Osseweijer, Patricia & van der Wielen, Luuk A.M. & Posada, John A., 2018. "Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment," Renewable Energy, Elsevier, vol. 129(PB), pages 733-747.
    3. Klein, Bruno Colling & Chagas, Mateus Ferreira & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Maciel Filho, Rubens, 2019. "Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): A case study for sugarcane mills and integrated sugarcane-microalgae biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Pala, Laxmi Prasad Rao & Wang, Qi & Kolb, Gunther & Hessel, Volker, 2017. "Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model," Renewable Energy, Elsevier, vol. 101(C), pages 484-492.
    5. Klein, Bruno Colling & Chagas, Mateus Ferreira & Junqueira, Tassia Lopes & Rezende, Mylene Cristina Alves Ferreira & Cardoso, Terezinha de Fátima & Cavalett, Otavio & Bonomi, Antonio, 2018. "Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries," Applied Energy, Elsevier, vol. 209(C), pages 290-305.
    6. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    7. Furtado Júnior, Juarez Corrêa & Palacio, José Carlos Escobar & Leme, Rafael Coradi & Lora, Electo Eduardo Silva & da Costa, José Eduardo Loureiro & Reyes, Arnaldo Martín Martínez & del Olmo, Oscar Alm, 2020. "Biorefineries productive alternatives optimization in the brazilian sugar and alcohol industry," Applied Energy, Elsevier, vol. 259(C).
    8. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    9. Jonker, J.G.G. & van der Hilst, F. & Junginger, H.M. & Cavalett, O. & Chagas, M.F. & Faaij, A.P.C., 2015. "Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies," Applied Energy, Elsevier, vol. 147(C), pages 593-610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petersen, Abdul M. & Chireshe, Farai & Gorgens, Johann F. & Van Dyk, Johan, 2022. "Flowsheet analysis of gasification-synthesis-refining for sustainable aviation fuel production from invasive alien plants," Energy, Elsevier, vol. 245(C).
    2. Aristide Giuliano, 2023. "The Transition of Scientific Research from Biomass-to-Energy/Biofuels to Biomass-to-Biochemicals in a Biorefinery Systems Framework," Energies, MDPI, vol. 16(5), pages 1-4, February.
    3. Bressanin, Jéssica Marcon & Guimarães, Henrique Real & Chagas, Mateus Ferreira & Sampaio, Isabelle Lobo de Mesquita & Klein, Bruno Colling & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Morais, E, 2021. "Advanced technologies for electricity production in the sugarcane value chain are a strategic option in a carbon reward policy context," Energy Policy, Elsevier, vol. 159(C).
    4. Sara Maen Asaad & Abrar Inayat & Lisandra Rocha-Meneses & Farrukh Jamil & Chaouki Ghenai & Abdallah Shanableh, 2022. "Prospective of Response Surface Methodology as an Optimization Tool for Biomass Gasification Process," Energies, MDPI, vol. 16(1), pages 1-18, December.
    5. Alejandro López-Fernández & David Bolonio & Isabel Amez & Blanca Castells & Marcelo F. Ortega & María-Jesús García-Martínez, 2021. "Design and Pinch Analysis of a GFT Process for Production of Biojet Fuel from Biomass and Plastics," Energies, MDPI, vol. 14(19), pages 1-31, September.
    6. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    7. Nariê Rinke Dias de Souza & Alexandre Souza & Mateus Ferreira Chagas & Thayse Aparecida Dourado Hernandes & Otávio Cavalett, 2022. "Addressing the contributions of electricity from biomass in Brazil in the context of the Sustainable Development Goals using life cycle assessment methods," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 980-995, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dossow, Marcel & Dieterich, Vincent & Hanel, Andreas & Spliethoff, Hartmut & Fendt, Sebastian, 2021. "Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Donoso, David & Bolonio, David & Ballesteros, Rosario & Lapuerta, Magín & Canoira, Laureano, 2022. "Hydrogenated orange oil: A waste derived drop-in biojet fuel," Renewable Energy, Elsevier, vol. 188(C), pages 1049-1058.
    3. Braun, Matthias & Grimme, Wolfgang & Oesingmann, Katrin, 2024. "Pathway to net zero: Reviewing sustainable aviation fuels, environmental impacts and pricing," Journal of Air Transport Management, Elsevier, vol. 117(C).
    4. Bressanin, Jéssica Marcon & Guimarães, Henrique Real & Chagas, Mateus Ferreira & Sampaio, Isabelle Lobo de Mesquita & Klein, Bruno Colling & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Morais, E, 2021. "Advanced technologies for electricity production in the sugarcane value chain are a strategic option in a carbon reward policy context," Energy Policy, Elsevier, vol. 159(C).
    5. Elias, Andrew Milli & Longati, Andreza Aparecida & de Campos Giordano, Roberto & Furlan, Felipe Fernando, 2021. "Retro-techno-economic-environmental analysis improves the operation efficiency of 1G-2G bioethanol and bioelectricity facilities," Applied Energy, Elsevier, vol. 282(PA).
    6. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress," Applied Energy, Elsevier, vol. 297(C).
    7. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    9. Song, Miaojia & Zhang, Xinghua & Chen, Yubao & Zhang, Qi & Chen, Lungang & Liu, Jianguo & Ma, Longlong, 2023. "Hydroprocessing of lipids: An effective production process for sustainable aviation fuel," Energy, Elsevier, vol. 283(C).
    10. Zhong, Dian & Zeng, Kuo & Li, Jun & Yang, Xinyi & Song, Yang & Zhu, Youjian & Flamant, Gilles & Nzihou, Ange & Yang, Haiping & Chen, Hanping, 2021. "3E analysis of a biomass-to-liquids production system based on solar gasification," Energy, Elsevier, vol. 217(C).
    11. Wang, Hongliang & Yang, Bin & Zhang, Qian & Zhu, Wanbin, 2020. "Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Francielle Carvalho & Joana Portugal-Pereira & Martin Junginger & Alexandre Szklo, 2021. "Biofuels for Maritime Transportation: A Spatial, Techno-Economic, and Logistic Analysis in Brazil, Europe, South Africa, and the USA," Energies, MDPI, vol. 14(16), pages 1-27, August.
    13. Petersen, Abdul M. & Chireshe, Farai & Gorgens, Johann F. & Van Dyk, Johan, 2022. "Flowsheet analysis of gasification-synthesis-refining for sustainable aviation fuel production from invasive alien plants," Energy, Elsevier, vol. 245(C).
    14. de Souza, Lorena Mendes & Mendes, Pietro A.S. & Aranda, Donato A.G., 2018. "Assessing the current scenario of the Brazilian biojet market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 426-438.
    15. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    16. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    17. Arnaldo Walter & Joaquim Seabra & Jansle Rocha & Marjorie Guarenghi & Nathália Vieira & Desirèe Damame & João Luís Santos, 2021. "Spatially Explicit Assessment of the Feasibility of Sustainable Aviation Fuels Production in Brazil: Results of Three Case Studies," Energies, MDPI, vol. 14(16), pages 1-21, August.
    18. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    19. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Ikhazuangbe, Prosper Monday-Ohien & Ibegbu, Anayo Jerome, 2021. "Experimental investigation of steam-air gasification of Cymbopogon citratus using Ni/dolomite/CeO2/K2CO3 as catalyst in a dual stage reactor for syngas and hydrogen production," Energy, Elsevier, vol. 237(C).
    20. Donatella Barisano & Giuseppe Canneto & Francesco Nanna & Antonio Villone & Emanuele Fanelli & Cesare Freda & Massimiliano Grieco & Andrea Lotierzo & Giacinto Cornacchia & Giacobbe Braccio & Vera Marc, 2022. "Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II," Energies, MDPI, vol. 15(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4576-:d:408569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.