IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4972-d613805.html
   My bibliography  Save this article

Spatially Explicit Assessment of the Feasibility of Sustainable Aviation Fuels Production in Brazil: Results of Three Case Studies

Author

Listed:
  • Arnaldo Walter

    (School of Mechanical Engineering, University of Campinas, 200 Mendeleyev, Campinas 13083-860, Brazil)

  • Joaquim Seabra

    (School of Mechanical Engineering, University of Campinas, 200 Mendeleyev, Campinas 13083-860, Brazil)

  • Jansle Rocha

    (School of Agricultural Engineering, University of Campinas, 501 Candido Rondon, Campinas 13083-875, Brazil)

  • Marjorie Guarenghi

    (School of Mechanical Engineering, University of Campinas, 200 Mendeleyev, Campinas 13083-860, Brazil)

  • Nathália Vieira

    (School of Mechanical Engineering, University of Campinas, 200 Mendeleyev, Campinas 13083-860, Brazil)

  • Desirèe Damame

    (School of Mechanical Engineering, University of Campinas, 200 Mendeleyev, Campinas 13083-860, Brazil)

  • João Luís Santos

    (Geo Meridium, 777 Jorge Hennings, Campinas 13070-142, Brazil)

Abstract

For international civil aviation to be able to significantly reduce its greenhouse gas (GHG) emissions, the use of Sustainable Aviation Fuels (SAF) needs to be made feasible. This paper presents the results of an assessment of the feasibility of production of SAF in Brazil, considering three certified routes, based on the dedicated production of eucalyptus, soy, sugarcane and corn. The results presented here refer to the production of biomass in selected locations, aiming to reduce GHG emissions and minimise production costs. Considering that the opportunity costs of feedstocks were not observed, the minimum selling price (MSP) of SAF in the reference case was estimated at 13.4 EUR·GJ −1 for the production based on soybean oil (HEFA-SPK route), 21.0 EUR·GJ −1 for the production based on ethanol from sugarcane and corn (ATJ-SPK) and 32.0 EUR·GJ −1 from eucalyptus (FT-SPK). These values refer to SAF’s n th industrial plant and biomass costs that are compatible with the current agricultural yields in Brazil but which are also the highest. The MSP results are relatively low compared to the estimates available in the literature, but they do not show the strict economic viability of SAFs in the short- to medium-term, mainly because of the low prices of fossil fuels.

Suggested Citation

  • Arnaldo Walter & Joaquim Seabra & Jansle Rocha & Marjorie Guarenghi & Nathália Vieira & Desirèe Damame & João Luís Santos, 2021. "Spatially Explicit Assessment of the Feasibility of Sustainable Aviation Fuels Production in Brazil: Results of Three Case Studies," Energies, MDPI, vol. 14(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4972-:d:613805
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arnaldo Walter & Joaquim Seabra & Jansle Rocha & Marjorie Guarenghi & Nathália Vieira & Desirèe Damame & João Luís Santos, 2021. "Spatially Explicit Assessment of Suitable Conditions for the Sustainable Production of Aviation Fuels in Brazil," Land, MDPI, vol. 10(7), pages 1-22, July.
    2. Klein, Bruno Colling & Chagas, Mateus Ferreira & Junqueira, Tassia Lopes & Rezende, Mylene Cristina Alves Ferreira & Cardoso, Terezinha de Fátima & Cavalett, Otavio & Bonomi, Antonio, 2018. "Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries," Applied Energy, Elsevier, vol. 209(C), pages 290-305.
    3. Beike Sumfleth & Stefan Majer & Daniela Thrän, 2020. "Recent Developments in Low iLUC Policies and Certification in the EU Biobased Economy," Sustainability, MDPI, vol. 12(19), pages 1-34, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Rosillo-Calle, 2022. "New Insights into Biomass and Biofuels in Rapidly Changing Energy Scenario," Energies, MDPI, vol. 15(18), pages 1-5, September.
    2. Aline Scaramuzza Aquino & Milena Fernandes da Silva & Thiago Silva de Almeida & Filipe Neimaier Bilheri & Attilio Converti & James Correia de Melo, 2022. "Mapping of Alternative Oilseeds from the Brazilian Caatinga and Assessment of Catalytic Pathways toward Biofuels Production," Energies, MDPI, vol. 15(18), pages 1-25, September.
    3. Xuanwei Ning & Peipei Dong & Chengliang Wu & Yongliang Wang & Yang Zhang, 2022. "Influence Mechanisms of Dynamic Changes in Temperature, Precipitation, Sunshine Duration and Active Accumulated Temperature on Soybean Resources: A Case Study of Hulunbuir, China, from 1951 to 2019," Energies, MDPI, vol. 15(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    3. Donoso, David & Bolonio, David & Ballesteros, Rosario & Lapuerta, Magín & Canoira, Laureano, 2022. "Hydrogenated orange oil: A waste derived drop-in biojet fuel," Renewable Energy, Elsevier, vol. 188(C), pages 1049-1058.
    4. Wood, Dallas & Larson, Justin & Jones, Jason & Galperin, Diana & Shelby, Michael & Gonzalez, Manuel, 2022. "World oil price impacts on country-specific fuel markets: Evidence of a muted global rebound effect," Energy Economics, Elsevier, vol. 111(C).
    5. Bressanin, Jéssica Marcon & Guimarães, Henrique Real & Chagas, Mateus Ferreira & Sampaio, Isabelle Lobo de Mesquita & Klein, Bruno Colling & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Morais, E, 2021. "Advanced technologies for electricity production in the sugarcane value chain are a strategic option in a carbon reward policy context," Energy Policy, Elsevier, vol. 159(C).
    6. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress," Applied Energy, Elsevier, vol. 297(C).
    7. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    9. O’Connell, Adrian & Kousoulidou, Marina & Lonza, Laura & Weindorf, Werner, 2019. "Considerations on GHG emissions and energy balances of promising aviation biofuel pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 504-515.
    10. Francielle Carvalho & Joana Portugal-Pereira & Martin Junginger & Alexandre Szklo, 2021. "Biofuels for Maritime Transportation: A Spatial, Techno-Economic, and Logistic Analysis in Brazil, Europe, South Africa, and the USA," Energies, MDPI, vol. 14(16), pages 1-27, August.
    11. Jéssica Marcon Bressanin & Bruno Colling Klein & Mateus Ferreira Chagas & Marcos Djun Barbosa Watanabe & Isabelle Lobo de Mesquita Sampaio & Antonio Bonomi & Edvaldo Rodrigo de Morais & Otávio Cavalet, 2020. "Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries," Energies, MDPI, vol. 13(17), pages 1-22, September.
    12. de Souza, Lorena Mendes & Mendes, Pietro A.S. & Aranda, Donato A.G., 2018. "Assessing the current scenario of the Brazilian biojet market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 426-438.
    13. Ricardo Vargas-Carpintero & Thomas Hilger & Karen Tiede & Carolin Callenius & Johannes Mössinger & Roney Fraga Souza & Juan Carlos Barroso Armas & Frank Rasche & Iris Lewandowski, 2022. "A Collaborative, Systems Approach for the Development of Biomass-Based Value Webs: The Case of the Acrocomia Palm," Land, MDPI, vol. 11(10), pages 1-31, October.
    14. Sofia Pinheiro Melo & Alexander Barke & Felipe Cerdas & Christian Thies & Mark Mennenga & Thomas S. Spengler & Christoph Herrmann, 2020. "Sustainability Assessment and Engineering of Emerging Aircraft Technologies—Challenges, Methods and Tools," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    15. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    16. Enrico Balugani & Beike Sumfleth & Stefan Majer & Diego Marazza & Daniela Thrän, 2022. "Bridging Modeling and Certification to Evaluate Low-ILUC-Risk Practices for Biobased Materials with a User-Friendly Tool," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    17. Mantas Svazas & Valentinas Navickas & Yuriy Bilan & Joanna Nakonieczny & Jana Spankova, 2021. "Biomass Clusterization from a Regional Perspective: The Case of Lithuania," Energies, MDPI, vol. 14(21), pages 1-15, October.
    18. Arnaldo Walter & Joaquim Seabra & Jansle Rocha & Marjorie Guarenghi & Nathália Vieira & Desirèe Damame & João Luís Santos, 2021. "Spatially Explicit Assessment of Suitable Conditions for the Sustainable Production of Aviation Fuels in Brazil," Land, MDPI, vol. 10(7), pages 1-22, July.
    19. Elias, Andrew Milli & Longati, Andreza Aparecida & de Campos Giordano, Roberto & Furlan, Felipe Fernando, 2021. "Retro-techno-economic-environmental analysis improves the operation efficiency of 1G-2G bioethanol and bioelectricity facilities," Applied Energy, Elsevier, vol. 282(PA).
    20. Hamdan, Sadeque & Jouini, Oualid & Cheaitou, Ali & Jemai, Zied & Granberg, Tobias Andersson & Josefsson, Billy, 2022. "Air traffic flow management under emission policies: Analyzing the impact of sustainable aviation fuel and different carbon prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 14-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4972-:d:613805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.