IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1210-d145448.html
   My bibliography  Save this article

A TODIM-Based Investment Decision Framework for Commercial Distributed PV Projects under the Energy Performance Contracting (EPC) Business Model: A Case in East-Central China

Author

Listed:
  • Yunna Wu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping, Beijing 102206, China)

  • Jianli Zhou

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping, Beijing 102206, China)

  • Yong Hu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping, Beijing 102206, China)

  • Lingwenying Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping, Beijing 102206, China)

  • Xiaokun Sun

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping, Beijing 102206, China)

Abstract

Distributed photovoltaic (DPV) projects have been rapidly proposed in China due to policy promotion, and investment decisions immensely decide the success of DPV projects. This paper aims to propose an investment decision framework for DPV projects under the energy performance contracting (EPC) business model which is currently vigorously promoted in China, thereby improving the efficiency and accuracy of decision making. Firstly, the distinctive criteria system for DPV project investment decision is established, including natural, market, technical, policy, competitive and economic factors. Secondly, the weights of criteria are determined by integrating subjective and objective weights to obtain more accurate weights. Then, the TODIM (an acronym in Portuguese of interactive and multicriteria decision making) approach is utilized to rank the alternative DPV projects, taking into account investors’ psychological behavior. Finally, a case study in central and eastern China is carried out to illustrate the rationality and feasibility of the proposed framework. The results show that the Project A 4 located in Nanchang City is the optimal project, and the rank of alternatives is sensitive to the recession coefficient. This paper provides insightful information for the DPV investors with different risk preferences to evaluate the investment performance of EPC projects and select the most appropriate one under uncertain environment.

Suggested Citation

  • Yunna Wu & Jianli Zhou & Yong Hu & Lingwenying Li & Xiaokun Sun, 2018. "A TODIM-Based Investment Decision Framework for Commercial Distributed PV Projects under the Energy Performance Contracting (EPC) Business Model: A Case in East-Central China," Energies, MDPI, vol. 11(5), pages 1-27, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1210-:d:145448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Yunna & Geng, Shuai & Zhang, Haobo & Gao, Min, 2014. "Decision framework of solar thermal power plant site selection based on linguistic Choquet operator," Applied Energy, Elsevier, vol. 136(C), pages 303-311.
    2. Zhang, Fang & Deng, Hao & Margolis, Robert & Su, Jun, 2015. "Analysis of distributed-generation photovoltaic deployment, installation time and cost, market barriers, and policies in China," Energy Policy, Elsevier, vol. 81(C), pages 43-55.
    3. Hong, Taehoon & Koo, Choongwan & Park, Joonho & Park, Hyo Seon, 2014. "A GIS (geographic information system)-based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system," Energy, Elsevier, vol. 65(C), pages 190-199.
    4. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    5. Yunna Wu & Chao Xie & Chuanbo Xu & Fang Li, 2017. "A Decision Framework for Electric Vehicle Charging Station Site Selection for Residential Communities under an Intuitionistic Fuzzy Environment: A Case of Beijing," Energies, MDPI, vol. 10(9), pages 1-25, August.
    6. Sufang Zhang, . "Innovative Business Models and Financing Mechanisms for Distributed Solar Photovoltaic (DSPV) Deployment in China," Chapters, in: Shigeru Kimura & Youngho Chang & Yanfei Li (ed.), Financing Renewable Energy Development in East Asia Summit Countries A Primer of Effective Policy Instruments, chapter 6, pages 161-191, Economic Research Institute for ASEAN and East Asia (ERIA).
    7. Gang Chen, 2015. "From mercantile strategy to domestic demand stimulation: changes in China's solar PV subsidies," Asia Pacific Business Review, Taylor & Francis Journals, vol. 21(1), pages 96-112, January.
    8. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    9. Shakouri, Mahmoud & Lee, Hyun Woo & Kim, Yong-Woo, 2017. "A probabilistic portfolio-based model for financial valuation of community solar," Applied Energy, Elsevier, vol. 191(C), pages 709-726.
    10. Mitscher, Martin & Rüther, Ricardo, 2012. "Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil," Energy Policy, Elsevier, vol. 49(C), pages 688-694.
    11. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Sensitivity analysis of technological, economic and sustainability evaluation of power plants using the analytic hierarchy process," Energy Policy, Elsevier, vol. 37(3), pages 788-798, March.
    12. Erdogmus, Senol & Aras, Haydar & Koç, Eylem, 2006. "Evaluation of alternative fuels for residential heating in Turkey using analytic network process (ANP) with group decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 269-279, June.
    13. Zhao, Xingang & Zeng, Yiping & Zhao, Di, 2015. "Distributed solar photovoltaics in China: Policies and economic performance," Energy, Elsevier, vol. 88(C), pages 572-583.
    14. Angelopoulos, Dimitrios & Doukas, Haris & Psarras, John & Stamtsis, Giorgos, 2017. "Risk-based analysis and policy implications for renewable energy investments in Greece," Energy Policy, Elsevier, vol. 105(C), pages 512-523.
    15. Yunna Wu & Meng Yang & Haobo Zhang & Kaifeng Chen & Yang Wang, 2016. "Optimal Site Selection of Electric Vehicle Charging Stations Based on a Cloud Model and the PROMETHEE Method," Energies, MDPI, vol. 9(3), pages 1-20, March.
    16. Holdermann, Claudius & Kissel, Johannes & Beigel, Jürgen, 2014. "Distributed photovoltaic generation in Brazil: An economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors," Energy Policy, Elsevier, vol. 67(C), pages 612-617.
    17. Zhang, Sufang, 2016. "Innovative business models and financing mechanisms for distributed solar PV (DSPV) deployment in China," Energy Policy, Elsevier, vol. 95(C), pages 458-467.
    18. Rocchetta, R. & Li, Y.F. & Zio, E., 2015. "Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 47-61.
    19. Ana Garcia-Bernabeu & Antonio Benito & Mila Bravo & David Pla-Santamaria, 2016. "Photovoltaic power plants: a multicriteria approach to investment decisions and a case study in western Spain," Annals of Operations Research, Springer, vol. 245(1), pages 163-175, October.
    20. Qin, Quande & Liang, Fuqi & Li, Li & Wei, Yi-Ming, 2017. "Selection of energy performance contracting business models: A behavioral decision-making approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 422-433.
    21. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    22. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2009. "Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process," Energy Policy, Elsevier, vol. 37(3), pages 778-787, March.
    23. Gorsevski, Pece V. & Cathcart, Steven C. & Mirzaei, Golrokh & Jamali, Mohsin M. & Ye, Xinyue & Gomezdelcampo, Enrique, 2013. "A group-based spatial decision support system for wind farm site selection in Northwest Ohio," Energy Policy, Elsevier, vol. 55(C), pages 374-385.
    24. Şengül, Ümran & Eren, Miraç & Eslamian Shiraz, Seyedhadi & Gezder, Volkan & Şengül, Ahmet Bilal, 2015. "Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 617-625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Hong & Wang, Xu & Song, Wenyan, 2020. "Technology selection for photovoltaic cell from sustainability perspective: An integrated approach," Renewable Energy, Elsevier, vol. 153(C), pages 1029-1041.
    2. Juárez-Luna, David & Urdiales, Eduardo, 2021. "Participación de la capacidad fotovoltaica instalada en México: un análisis benchmarking [Share of installed photovoltaic capacity in Mexico: a benchmarking analysis]," MPRA Paper 114589, University Library of Munich, Germany.
    3. Liu, Zhengguang & Guo, Zhiling & Song, Chenchen & Du, Ying & Chen, Qi & Chen, Yuntian & Zhang, Haoran, 2023. "Business model comparison of slum-based PV to realize low-cost and flexible power generation in city-level," Applied Energy, Elsevier, vol. 344(C).
    4. Wang, Xu & Fang, Hong & Fang, Siran, 2020. "An integrated approach for exploitation block selection of shale gas—based on cloud model and grey relational analysis," Resources Policy, Elsevier, vol. 68(C).
    5. Yin, Yu & Liu, Jicheng, 2022. "Risk assessment of photovoltaic - Energy storage utilization project based on improved Cloud-TODIM in China," Energy, Elsevier, vol. 253(C).
    6. Wenjie Zhang & Hongping Yuan, 2019. "Promoting Energy Performance Contracting for Achieving Urban Sustainability: What is the Research Trend?," Energies, MDPI, vol. 12(8), pages 1-18, April.
    7. Yanbin Li & Yanting Sun & Yulin Kang & Feng Zhang & Junjie Zhang, 2023. "An Optimal Site Selection Framework for Near-Zero Carbon Emission Power Plants Based on Multiple Stakeholders," Energies, MDPI, vol. 16(2), pages 1-26, January.
    8. Aurora Skrame & Claudio Ciancio & Vincenzo Corvello & Roberto Musmanno, 2020. "A Quantitative Model Supporting Socially Responsible Public Investment Decisions for Sustainable Tourism," IJFS, MDPI, vol. 8(2), pages 1-9, June.
    9. Wenjie Zhang & Hongping Yuan, 2019. "A Bibliometric Analysis of Energy Performance Contracting Research from 2008 to 2018," Sustainability, MDPI, vol. 11(13), pages 1-23, June.
    10. Lihui Zhang & He Xin & Zhinan Kan, 2019. "Sustainability Performance Evaluation of Hybrid Energy System Using an Improved Fuzzy Synthetic Evaluation Approach," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    11. Zhou, Jianli & Wu, Yunna & Tao, Yao & Gao, Jianwei & Zhong, Zhiming & Xu, Chuanbo, 2021. "Geographic information big data-driven two-stage optimization model for location decision of hydrogen refueling stations: An empirical study in China," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    2. Yunna Wu & Chao Xie & Chuanbo Xu & Fang Li, 2017. "A Decision Framework for Electric Vehicle Charging Station Site Selection for Residential Communities under an Intuitionistic Fuzzy Environment: A Case of Beijing," Energies, MDPI, vol. 10(9), pages 1-25, August.
    3. Xu, Xinkuo & Guan, Chengmei & Jin, Jiayu, 2018. "Valuing the carbon assets of distributed photovoltaic generation in China," Energy Policy, Elsevier, vol. 121(C), pages 374-382.
    4. Yunna Wu & Meng Yang & Haobo Zhang & Kaifeng Chen & Yang Wang, 2016. "Optimal Site Selection of Electric Vehicle Charging Stations Based on a Cloud Model and the PROMETHEE Method," Energies, MDPI, vol. 9(3), pages 1-20, March.
    5. Kayser, Dirk, 2016. "Solar photovoltaic projects in China: High investment risks and the need for institutional response," Applied Energy, Elsevier, vol. 174(C), pages 144-152.
    6. Wu, Yunna & Xu, Chuanbo & Ke, Yiming & Chen, Kaifeng & Sun, Xiaokun, 2018. "An intuitionistic fuzzy multi-criteria framework for large-scale rooftop PV project portfolio selection: Case study in Zhejiang, China," Energy, Elsevier, vol. 143(C), pages 295-309.
    7. Wenjun Chen & Yanlei Zhu & Meng Yang & Jiahai Yuan, 2017. "Optimal Site Selection of Wind-Solar Complementary Power Generation Project for a Large-Scale Plug-In Charging Station," Sustainability, MDPI, vol. 9(11), pages 1-22, October.
    8. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    9. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    10. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    11. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. B. Domenech & L. Ferrer-Martí & R. Pastor, 2022. "Multicriteria analysis of renewable-based electrification projects in developing countries," Annals of Operations Research, Springer, vol. 312(2), pages 1375-1401, May.
    13. Ömer Kaya & Kadir Diler Alemdar & Tiziana Campisi & Ahmet Tortum & Merve Kayaci Çodur, 2021. "The Development of Decarbonisation Strategies: A Three-Step Methodology for the Suitable Analysis of Current EVCS Locations Applied to Istanbul, Turkey," Energies, MDPI, vol. 14(10), pages 1-21, May.
    14. Mousavi, M. & Gitinavard, H. & Mousavi, S.M., 2017. "A soft computing based-modified ELECTRE model for renewable energy policy selection with unknown information," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 774-787.
    15. Li, Yunwei & Chen, Kui & Ding, Ruixin & Zhang, Jing & Hao, Yu, 2023. "How do photovoltaic poverty alleviation projects relieve household energy poverty? Evidence from China," Energy Economics, Elsevier, vol. 118(C).
    16. Liu, Zhengguang & Guo, Zhiling & Song, Chenchen & Du, Ying & Chen, Qi & Chen, Yuntian & Zhang, Haoran, 2023. "Business model comparison of slum-based PV to realize low-cost and flexible power generation in city-level," Applied Energy, Elsevier, vol. 344(C).
    17. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    18. Ullah, Kafait & Hamid, Salman & Mirza, Faisal Mehmood & Shakoor, Usman, 2018. "Prioritizing the gaseous alternatives for the road transport sector of Pakistan: A multi criteria decision making analysis," Energy, Elsevier, vol. 165(PB), pages 1072-1084.
    19. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    20. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1210-:d:145448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.