IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v55y2013icp374-385.html
   My bibliography  Save this article

A group-based spatial decision support system for wind farm site selection in Northwest Ohio

Author

Listed:
  • Gorsevski, Pece V.
  • Cathcart, Steven C.
  • Mirzaei, Golrokh
  • Jamali, Mohsin M.
  • Ye, Xinyue
  • Gomezdelcampo, Enrique

Abstract

The purpose of this paper is to demonstrate the benefits of applying a spatial decision support system (SDSS) framework for evaluating the suitability for wind farm siting in Northwest Ohio. The multiple criteria evaluation (MCE) prototype system is intended for regional planning but also for promoting group decision making that could involve participants with different interests in the development of decision alternatives. The framework integrates environmental and economic criteria and builds a hierarchy for wind farm siting using weighted linear combination (WLC) techniques and GIS functionality. The SDSS allows the multiple participants to interact and develop an understanding of the spatial data for assigning importance values to each factor. The WLC technique is used to combine the assigned values with map layers, which are standardized using fuzzy set theory, to produce individual suitability maps. The maps created by personal preferences from the participants are aggregated for producing a group solution using the Borda method. Sensitivity analysis is performed on the group solution to examine how small changes in the factor weights affect the calculated suitability scores. The results from the sensitivity analysis are intended to aid understanding of compromised solutions through changes in the input data from the participant's perspective.

Suggested Citation

  • Gorsevski, Pece V. & Cathcart, Steven C. & Mirzaei, Golrokh & Jamali, Mohsin M. & Ye, Xinyue & Gomezdelcampo, Enrique, 2013. "A group-based spatial decision support system for wind farm site selection in Northwest Ohio," Energy Policy, Elsevier, vol. 55(C), pages 374-385.
  • Handle: RePEc:eee:enepol:v:55:y:2013:i:c:p:374-385
    DOI: 10.1016/j.enpol.2012.12.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512010580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.12.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janke, Jason R., 2010. "Multicriteria GIS modeling of wind and solar farms in Colorado," Renewable Energy, Elsevier, vol. 35(10), pages 2228-2234.
    2. Charles Warren & Carolyn Lumsden & Simone O'Dowd & Richard Birnie, 2005. "'Green On Green': Public perceptions of wind power in Scotland and Ireland," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 48(6), pages 853-875.
    3. Hao Fanghua & Chen Guanchun, 2010. "A Fuzzy Multi-Criteria Group Decision-Making Model Based on Weighted Borda Scoring Method for Watershed Ecological Risk Management: a Case Study of Three Gorges Reservoir Area of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2139-2165, August.
    4. Wolsink, Maarten, 2007. "Planning of renewables schemes: Deliberative and fair decision-making on landscape issues instead of reproachful accusations of non-cooperation," Energy Policy, Elsevier, vol. 35(5), pages 2692-2704, May.
    5. Toke, David & Breukers, Sylvia & Wolsink, Maarten, 2008. "Wind power deployment outcomes: How can we account for the differences?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1129-1147, May.
    6. Swofford, Jeffrey & Slattery, Michael, 2010. "Public attitudes of wind energy in Texas: Local communities in close proximity to wind farms and their effect on decision-making," Energy Policy, Elsevier, vol. 38(5), pages 2508-2519, May.
    7. Gamboa, Gonzalo & Munda, Giuseppe, 2007. "The problem of windfarm location: A social multi-criteria evaluation framework," Energy Policy, Elsevier, vol. 35(3), pages 1564-1583, March.
    8. Ramanathan Sugumaran & James C. Meyer & Jim Davis, 2004. "A Web-based environmental decision support system (WEDSS) for environmental planning and watershed management," Journal of Geographical Systems, Springer, vol. 6(3), pages 307-322, October.
    9. Rodman, Laura C. & Meentemeyer, Ross K., 2006. "A geographic analysis of wind turbine placement in Northern California," Energy Policy, Elsevier, vol. 34(15), pages 2137-2149, October.
    10. Aydin, Nazli Yonca & Kentel, Elcin & Duzgun, Sebnem, 2010. "GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 364-373, January.
    11. Gross, Catherine, 2007. "Community perspectives of wind energy in Australia: The application of a justice and community fairness framework to increase social acceptance," Energy Policy, Elsevier, vol. 35(5), pages 2727-2736, May.
    12. Giuseppe Munda, 2008. "Social Multi-Criteria Evaluation for a Sustainable Economy," Springer Books, Springer, number 978-3-540-73703-2, June.
    13. Joel D. Barkan & Paul J. Densham & Gerard Rushton, 2006. "Space Matters: Designing Better Electoral Systems for Emerging Democracies," American Journal of Political Science, John Wiley & Sons, vol. 50(4), pages 926-939, October.
    14. Hiltunen, Veikko & Kangas, Jyrki & Pykalainen, Jouni, 2008. "Voting methods in strategic forest planning -- Experiences from Metsahallitus," Forest Policy and Economics, Elsevier, vol. 10(3), pages 117-127, January.
    15. Bishop, Ian D. & Stock, Christian, 2010. "Using collaborative virtual environments to plan wind energy installations," Renewable Energy, Elsevier, vol. 35(10), pages 2348-2355.
    16. Sovacool, Benjamin K., 2009. "Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity," Energy Policy, Elsevier, vol. 37(6), pages 2241-2248, June.
    17. Baban, Serwan M.J & Parry, Tim, 2001. "Developing and applying a GIS-assisted approach to locating wind farms in the UK," Renewable Energy, Elsevier, vol. 24(1), pages 59-71.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grassi, Stefano & Chokani, Ndaona & Abhari, Reza S., 2012. "Large scale technical and economical assessment of wind energy potential with a GIS tool: Case study Iowa," Energy Policy, Elsevier, vol. 45(C), pages 73-85.
    2. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    3. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    4. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    5. Harper, Michael & Anderson, Ben & James, Patrick A.B. & Bahaj, AbuBakr S., 2019. "Onshore wind and the likelihood of planning acceptance: Learning from a Great Britain context," Energy Policy, Elsevier, vol. 128(C), pages 954-966.
    6. Sigurd Hilmo Lundheim & Giuseppe Pellegrini-Masini & Christian A. Klöckner & Stefan Geiss, 2022. "Developing a Theoretical Framework to Explain the Social Acceptability of Wind Energy," Energies, MDPI, vol. 15(14), pages 1-24, July.
    7. Gigović, Ljubomir & Pamučar, Dragan & Božanić, Darko & Ljubojević, Srđan, 2017. "Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia," Renewable Energy, Elsevier, vol. 103(C), pages 501-521.
    8. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    9. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    10. Dragan Pamučar & Ljubomir Gigović & Zoran Bajić & Miljojko Janošević, 2017. "Location Selection for Wind Farms Using GIS Multi-Criteria Hybrid Model: An Approach Based on Fuzzy and Rough Numbers," Sustainability, MDPI, vol. 9(8), pages 1-23, July.
    11. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
    12. Pepermans, Yves & Loots, Ilse, 2013. "Wind farm struggles in Flanders fields: A sociological perspective," Energy Policy, Elsevier, vol. 59(C), pages 321-328.
    13. van Rensburg, Thomas M. & Kelley, Hugh & Jeserich, Nadine, 2015. "What influences the probability of wind farm planning approval: Evidence from Ireland," Ecological Economics, Elsevier, vol. 111(C), pages 12-22.
    14. Yenneti, Komali & Day, Rosie, 2015. "Procedural (in)justice in the implementation of solar energy: The case of Charanaka solar park, Gujarat, India," Energy Policy, Elsevier, vol. 86(C), pages 664-673.
    15. Slattery, Michael C. & Johnson, Becky L. & Swofford, Jeffrey A. & Pasqualetti, Martin J., 2012. "The predominance of economic development in the support for large-scale wind farms in the U.S. Great Plains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3690-3701.
    16. Grashof, Katherina, 2019. "Are auctions likely to deter community wind projects? And would this be problematic?," Energy Policy, Elsevier, vol. 125(C), pages 20-32.
    17. Simón, Xavier & Copena, Damián & Montero, María, 2019. "Strong wind development with no community participation. The case of Galicia (1995–2009)," Energy Policy, Elsevier, vol. 133(C).
    18. Sotiropoulou, Kalliopi F. & Vavatsikos, Athanasios P., 2021. "Onshore wind farms GIS-Assisted suitability analysis using PROMETHEE II," Energy Policy, Elsevier, vol. 158(C).
    19. Jangid, Jayant & Bera, Apurba Kumar & Joseph, Manoj & Singh, Vishal & Singh, T.P. & Pradhan, B.K. & Das, Sandipan, 2016. "Potential zones identification for harvesting wind energy resources in desert region of India – A multi criteria evaluation approach using remote sensing and GIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1-10.
    20. Asadi, Meysam & Pourhossein, Kazem, 2021. "Wind farm site selection considering turbulence intensity," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:55:y:2013:i:c:p:374-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.