IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3202-d183722.html
   My bibliography  Save this article

Measures to Remove Geothermal Energy Barriers in the European Union

Author

Listed:
  • Antonio Colmenar-Santos

    (Departamento de Ingeniería Eléctrica, Electrónica, Control, Telemática y Química Aplicada a la Ingeniería, UNED, Juan del Rosal, 12 Ciudad Universitaria, 28040 Madrid, Spain)

  • Elisabet Palomo-Torrejón

    (Departamento de Ingeniería Eléctrica, Electrónica, Control, Telemática y Química Aplicada a la Ingeniería, UNED, Juan del Rosal, 12 Ciudad Universitaria, 28040 Madrid, Spain)

  • Enrique Rosales-Asensio

    (Departamento de Ingeniería Eléctrica y de Sistemas y Automática, Universidad de León, Escuela de Ingenierías Industrial e Informática Campus de Vegazana, s/n 24071 León, Spain)

  • David Borge-Diez

    (Departamento de Ingeniería Eléctrica y de Sistemas y Automática, Universidad de León, Escuela de Ingenierías Industrial e Informática Campus de Vegazana, s/n 24071 León, Spain)

Abstract

This article examines the main market barriers that hamper the introduction of geothermal energy at local, national, and European levels as well as the necessary steps that need to be taken to eradicate them, thus contributing to the general use of this renewable source of energy. The novelty of this study lies in the detailed description of four different scenarios: the European Union (EU), Spain, the Canary Islands, and the agricultural sector for the three types of geothermal energies and their uses: Low-enthalpy or thermal uses, high-enthalpy or electrical uses and renewable energy mix. The results are expected to differ in terms of level of introduction, barriers, and measures to be taken. We have selected Spain within the European context due to its meagre 0.1% geothermal market share in primary demand for renewable energy, and the Canary Islands in particular, given its insular nature. We have likewise picked the agricultural sector due to its underdevelopment as far as renewable energies are concerned, including geothermal energy.

Suggested Citation

  • Antonio Colmenar-Santos & Elisabet Palomo-Torrejón & Enrique Rosales-Asensio & David Borge-Diez, 2018. "Measures to Remove Geothermal Energy Barriers in the European Union," Energies, MDPI, Open Access Journal, vol. 11(11), pages 1-29, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3202-:d:183722
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Boqiang & Omoju, Oluwasola E., 2017. "Focusing on the right targets: Economic factors driving non-hydro renewable energy transition," Renewable Energy, Elsevier, vol. 113(C), pages 52-63.
    2. Sanyé-Mengual, Esther & Romanos, Héctor & Molina, Catalina & Oliver, M. Antònia & Ruiz, Núria & Pérez, Marta & Carreras, David & Boada, Martí & Garcia-Orellana, Jordi & Duch, Jordi & Rieradevall, Joan, 2014. "Environmental and self-sufficiency assessment of the energy metabolism of tourist hubs on Mediterranean Islands: The case of Menorca (Spain)," Energy Policy, Elsevier, vol. 65(C), pages 377-387.
    3. Economou, Agisilaos, 2010. "Renewable energy resources and sustainable development in Mykonos (Greece)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1496-1501, June.
    4. Thomas Patsialis & Ioannis Kougias & Nerantzis Kazakis & Nicolaos Theodossiou & Peter Droege, 2016. "Supporting Renewables’ Penetration in Remote Areas through the Transformation of Non-Powered Dams," Energies, MDPI, Open Access Journal, vol. 9(12), pages 1-14, December.
    5. Francesco Calise & Davide Capuano & Laura Vanoli, 2015. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant," Energies, MDPI, Open Access Journal, vol. 8(4), pages 1-41, April.
    6. Emanuele Bonamente & Andrea Aquino, 2017. "Life-Cycle Assessment of an Innovative Ground-Source Heat Pump System with Upstream Thermal Storage," Energies, MDPI, Open Access Journal, vol. 10(11), pages 1-10, November.
    7. Cristina Sáez Blázquez & Arturo Farfán Martín & Ignacio Martín Nieto & Diego González-Aguilera, 2018. "Economic and Environmental Analysis of Different District Heating Systems Aided by Geothermal Energy," Energies, MDPI, Open Access Journal, vol. 11(5), pages 1-17, May.
    8. repec:gam:jeners:v:9:y:2016:i:4:p:268:d:67605 is not listed on IDEAS
    9. Karagiannis, Ioannis C. & Soldatos, Peter G., 2010. "Estimation of critical CO2 values when planning the power source in water desalination: The case of the small Aegean islands," Energy Policy, Elsevier, vol. 38(8), pages 3891-3897, August.
    10. Giatrakos, Georgios P. & Tsoutsos, Theocharis D. & Zografakis, Nikos, 2009. "Sustainable power planning for the island of Crete," Energy Policy, Elsevier, vol. 37(4), pages 1222-1238, April.
    11. Bhattacharya, Mita & Awaworyi Churchill, Sefa & Paramati, Sudharshan Reddy, 2017. "The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions," Renewable Energy, Elsevier, vol. 111(C), pages 157-167.
    12. Majbaul Alam & Subhes Bhattacharyya, 2016. "Decentralized Renewable Hybrid Mini-Grids for Sustainable Electrification of the Off-Grid Coastal Areas of Bangladesh," Energies, MDPI, Open Access Journal, vol. 9(4), pages 1-16, April.
    13. Ozgener, Onder, 2010. "Use of solar assisted geothermal heat pump and small wind turbine systems for heating agricultural and residential buildings," Energy, Elsevier, vol. 35(1), pages 262-268.
    14. Μichalena, Evanthie & Hills, Jeremy M., 2012. "Renewable energy issues and implementation of European energy policy: The missing generation?," Energy Policy, Elsevier, vol. 45(C), pages 201-216.
    15. Borge-Diez, David & Colmenar-Santos, Antonio & Pérez-Molina, Clara & López-Rey, África, 2015. "Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities," Energy, Elsevier, vol. 88(C), pages 821-836.
    16. Van Dael, Miet & Lizin, Sebastien & Swinnen, Gilbert & Van Passel, Steven, 2017. "Young people’s acceptance of bioenergy and the influence of attitude strength on information provision," Renewable Energy, Elsevier, vol. 107(C), pages 417-430.
    17. Lucas, Hugo & Fifita, Solomone & Talab, Ilham & Marschel, Cornelia & Cabeza, Luisa F., 2017. "Critical challenges and capacity building needs for renewable energy deployment in Pacific Small Island Developing States (Pacific SIDS)," Renewable Energy, Elsevier, vol. 107(C), pages 42-52.
    18. Mattheus Goosen & Hacene Mahmoudi & Noreddine Ghaffour, 2010. "Water Desalination Using Geothermal Energy," Energies, MDPI, Open Access Journal, vol. 3(8), pages 1-20, August.
    19. Marques, António C. & Fuinhas, José A. & Pires Manso, J.R., 2010. "Motivations driving renewable energy in European countries: A panel data approach," Energy Policy, Elsevier, vol. 38(11), pages 6877-6885, November.
    20. Boie, Inga & Fernandes, Camila & Frías, Pablo & Klobasa, Marian, 2014. "Efficient strategies for the integration of renewable energy into future energy infrastructures in Europe – An analysis based on transnational modeling and case studies for nine European regions," Energy Policy, Elsevier, vol. 67(C), pages 170-185.
    21. Wesselink, Maxim & Liu, Wen & Koornneef, Joris & van den Broek, Machteld, 2018. "Conceptual market potential framework of high temperature aquifer thermal energy storage - A case study in the Netherlands," Energy, Elsevier, vol. 147(C), pages 477-489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean M. Watson & Gioia Falcone & Rob Westaway, 2020. "Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential," Energies, MDPI, Open Access Journal, vol. 13(14), pages 1-29, July.
    2. Palomo-Torrejón, Elisabet & Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Mur-Pérez, Francisco, 2021. "Economic and environmental benefits of geothermal energy in industrial processes," Renewable Energy, Elsevier, vol. 174(C), pages 134-146.
    3. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    4. Ilaria Delponte & Corrado Schenone, 2020. "RES Implementation in Urban Areas: An Updated Overview," Sustainability, MDPI, Open Access Journal, vol. 12(1), pages 1-14, January.
    5. Joanna Boguniewicz-Zabłocka & Ewelina Łukasiewicz & Domenico Guida, 2019. "Analysis of the Sustainable Use of Geothermal Waters and Future Development Possibilities—A Case Study from the Opole Region, Poland," Sustainability, MDPI, Open Access Journal, vol. 11(23), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Hui & Xie, Nan & Fang, Debin & Zhang, Xiaoling, 2018. "The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries," Applied Energy, Elsevier, vol. 211(C), pages 1229-1244.
    2. Przychodzen, Wojciech & Przychodzen, Justyna, 2020. "Determinants of renewable energy production in transition economies: A panel data approach," Energy, Elsevier, vol. 191(C).
    3. Ákos Hamburger & Gábor Harangozó, 2018. "Factors Affecting the Evolution of Renewable Electricity Generating Capacities: A Panel Data Analysis of European Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 161-172.
    4. Can Şener, Şerife Elif & Sharp, Julia L. & Anctil, Annick, 2018. "Factors impacting diverging paths of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2335-2342.
    5. Bourcet, Clémence, 2020. "Empirical determinants of renewable energy deployment: A systematic literature review," Energy Economics, Elsevier, vol. 85(C).
    6. Chmutina, Ksenia & Goodier, Chris I., 2014. "Alternative future energy pathways: Assessment of the potential of innovative decentralised energy systems in the UK," Energy Policy, Elsevier, vol. 66(C), pages 62-72.
    7. Gozgor, Giray & Mahalik, Mantu Kumar & Demir, Ender & Padhan, Hemachandra, 2020. "The impact of economic globalization on renewable energy in the OECD countries," Energy Policy, Elsevier, vol. 139(C).
    8. Wang, Qiang & Wang, Lili, 2020. "Renewable energy consumption and economic growth in OECD countries: A nonlinear panel data analysis," Energy, Elsevier, vol. 207(C).
    9. Sandu, Suwin & Yang, Muyi & Shi, Xunpeng & Chi, Yuanying, 2020. "A governance perspective on electricity industry development: The case of Papua New Guinea," Energy Policy, Elsevier, vol. 141(C).
    10. Lin, Boqiang & Omoju, Oluwasola E., 2017. "Focusing on the right targets: Economic factors driving non-hydro renewable energy transition," Renewable Energy, Elsevier, vol. 113(C), pages 52-63.
    11. Doukas, Haris & Papadopoulou, Alexandra & Savvakis, Nikolaos & Tsoutsos, Theocharis & Psarras, John, 2012. "Assessing energy sustainability of rural communities using Principal Component Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1949-1957.
    12. Dong, Kangyin & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "Does natural gas consumption mitigate CO2 emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 419-429.
    13. Kamel, Rashad M. & Chaouachi, Aymen & Nagasaka, Ken, 2010. "Wind power smoothing using fuzzy logic pitch controller and energy capacitor system for improvement Micro-Grid performance in islanding mode," Energy, Elsevier, vol. 35(5), pages 2119-2129.
    14. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    15. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    16. Justyna Godawska & Joanna Wyrobek, 2021. "The Impact of Environmental Policy Stringency on Renewable Energy Production in the Visegrad Group Countries," Energies, MDPI, Open Access Journal, vol. 14(19), pages 1-23, September.
    17. Heberle, Florian & Hofer, Markus & Ürlings, Nicolas & Schröder, Hartwig & Anderlohr, Thomas & Brüggemann, Dieter, 2017. "Techno-economic analysis of a solar thermal retrofit for an air-cooled geothermal Organic Rankine Cycle power plant," Renewable Energy, Elsevier, vol. 113(C), pages 494-502.
    18. Shahbaz, Muhammad & Lahiani, Amine & Sinha, Avik, 2018. "Renewable Energy Consumption, Income, CO2 Emissions and Oil Prices in G7 Countries: The Importance of Asymmetries," MPRA Paper 102895, University Library of Munich, Germany, revised 2018.
    19. Nayyar Hussain Mirjat & Mohammad Aslam Uqaili & Khanji Harijan & Mohd Wazir Mustafa & Md. Mizanur Rahman & M. Waris Ali Khan, 2018. "Multi-Criteria Analysis of Electricity Generation Scenarios for Sustainable Energy Planning in Pakistan," Energies, MDPI, Open Access Journal, vol. 11(4), pages 1-33, March.
    20. Clulow, Z. & Ferguson, M. & Ashworth, P & Reiner, D., 2021. "Political ideology and public views of the energy transition in Australia and the UK," Cambridge Working Papers in Economics 2126, Faculty of Economics, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3202-:d:183722. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.mdpi.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.