IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3541-d382236.html
   My bibliography  Save this article

Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential

Author

Listed:
  • Sean M. Watson

    (James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK)

  • Gioia Falcone

    (James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK)

  • Rob Westaway

    (James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK)

Abstract

One potential opportunity for the decarbonisation of heat supply in the UK is the repurposing of onshore hydrocarbon wells for the production and/or storage of geothermal heat. This paper reports an investigation into the most favourable candidate sites for such repurposing, taking into consideration the available thermal energy outputs and technological options for heat use. A GIS mapping model was generated, combining public domain data on onshore wells and production data from onshore fields, provided by the UK Oil and Gas Authority, with available subsurface temperature data. This model has thus integrated information on location, depth, operational status, and bottom-hole temperature for onshore hydrocarbon wells with production rates from onshore fields in the UK. Of the 2242 onshore hydrocarbon wells thus reported, 560 have the potential to be repurposed, 292 of which are currently operating. Using aggregated water production data for all operating wells in each field, the fields with the greatest potential for geothermal repurposing are ranked. Two of these, the Wytch Farm and Wareham fields, are selected for more detailed analysis. Wytch Farm, the largest onshore oilfield in western Europe, produces water at ~65 °C that might yield a feasible thermal power output of ~90 MW. If an end use could be found where it might substitute for burning of natural gas, the value of this output would be ~£90,000 per day or ~£30 million per year. However, this field is located in a protected landscape where local development would be restricted by planning regulations. The Wareham field is not in a protected landscape, but the low temperature, ~44 °C, and low flow rate limit the scope of potential end uses. Nonetheless, these and the other highly ranked fields have potential heat outputs that are significant compared with other geothermal heat projects, thus offering the possibility of making useful contributions to the decarbonisation of UK energy use.

Suggested Citation

  • Sean M. Watson & Gioia Falcone & Rob Westaway, 2020. "Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential," Energies, MDPI, vol. 13(14), pages 1-29, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3541-:d:382236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Xiaolei & Falcone, Gioia & Alimonti, Claudio, 2018. "A systematic study of harnessing low-temperature geothermal energy from oil and gas reservoirs," Energy, Elsevier, vol. 142(C), pages 346-355.
    2. Falcone, Gioia & Liu, Xiaolei & Okech, Roy Radido & Seyidov, Ferid & Teodoriu, Catalin, 2018. "Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions," Energy, Elsevier, vol. 160(C), pages 54-63.
    3. Michał Kaczmarczyk & Barbara Tomaszewska & Agnieszka Operacz, 2020. "Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System," Energies, MDPI, vol. 13(10), pages 1-18, May.
    4. Alimonti, C. & Soldo, E. & Bocchetti, D. & Berardi, D., 2018. "The wellbore heat exchangers: A technical review," Renewable Energy, Elsevier, vol. 123(C), pages 353-381.
    5. Lowes, Richard & Woodman, Bridget & Fitch-Roy, Oscar, 2019. "Policy change, power and the development of Great Britain's Renewable Heat Incentive," Energy Policy, Elsevier, vol. 131(C), pages 410-421.
    6. Auld, Alison & Hogg, Simon & Berson, Arganthaël & Gluyas, Jon, 2014. "Power production via North Sea Hot Brines," Energy, Elsevier, vol. 78(C), pages 674-684.
    7. Carson Kinney & Alireza Dehghani-Sanij & SeyedBijan Mahbaz & Maurice B. Dusseault & Jatin S. Nathwani & Roydon A. Fraser, 2019. "Geothermal Energy for Sustainable Food Production in Canada’s Remote Northern Communities," Energies, MDPI, vol. 12(21), pages 1-25, October.
    8. Ladislaus Rybach, 2014. "Geothermal Power Growth 1995–2013—A Comparison with Other Renewables," Energies, MDPI, vol. 7(8), pages 1-11, July.
    9. Antonio Colmenar-Santos & Elisabet Palomo-Torrejón & Enrique Rosales-Asensio & David Borge-Diez, 2018. "Measures to Remove Geothermal Energy Barriers in the European Union," Energies, MDPI, vol. 11(11), pages 1-29, November.
    10. Alessandro Sbrana & Paola Marianelli & Giuseppe Pasquini & Paolo Costantini & Francesco Palmieri & Valentina Ciani & Michele Sbrana, 2018. "The Integration of 3D Modeling and Simulation to Determine the Energy Potential of Low-Temperature Geothermal Systems in the Pisa (Italy) Sedimentary Plain," Energies, MDPI, vol. 11(6), pages 1-20, June.
    11. Paul L. Younger, 2015. "Geothermal Energy: Delivering on the Global Potential," Energies, MDPI, vol. 8(10), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher S. Brown & Nigel J. Cassidy & Stuart S. Egan & Dan Griffiths, 2022. "Thermal and Economic Analysis of Heat Exchangers as Part of a Geothermal District Heating Scheme in the Cheshire Basin, UK," Energies, MDPI, vol. 15(6), pages 1-17, March.
    2. Jello, Josiane & Baser, Tugce, 2023. "Utilization of existing hydrocarbon wells for geothermal system development: A review," Applied Energy, Elsevier, vol. 348(C).
    3. Christopher Simon Brown, 2023. "Revisiting the Deep Geothermal Potential of the Cheshire Basin, UK," Energies, MDPI, vol. 16(3), pages 1-19, January.
    4. Theo Renaud & Patrick G. Verdin & Gioia Falcone, 2020. "Conjugated Numerical Approach for Modelling DBHE in High Geothermal Gradient Environments," Energies, MDPI, vol. 13(22), pages 1-18, November.
    5. Duggal, R. & Rayudu, R. & Hinkley, J. & Burnell, J. & Wieland, C. & Keim, M., 2022. "A comprehensive review of energy extraction from low-temperature geothermal resources in hydrocarbon fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Isa Kolo & Christopher S. Brown & Gioia Falcone & David Banks, 2023. "Repurposing a Geothermal Exploration Well as a Deep Borehole Heat Exchanger: Understanding Long-Term Effects of Lithological Layering, Flow Direction, and Circulation Flow Rate," Sustainability, MDPI, vol. 15(5), pages 1-24, February.
    7. Christopher S. Brown & Hannah Doran & Isa Kolo & David Banks & Gioia Falcone, 2023. "Investigating the Influence of Groundwater Flow and Charge Cycle Duration on Deep Borehole Heat Exchangers for Heat Extraction and Borehole Thermal Energy Storage," Energies, MDPI, vol. 16(6), pages 1-22, March.
    8. Alison A. Monaghan & David A. C. Manning & Zoe K. Shipton, 2020. "Comment on ‘Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential. Watson et al. (2020)’," Energies, MDPI, vol. 13(23), pages 1-2, December.
    9. Sean M. Watson & Gioia Falcone & Rob Westaway, 2020. "Reply to Comment by Alison A. Monaghan, David A.C. Manning, and Zoe K. Shipton on ‘Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential, by Watson," Energies, MDPI, vol. 13(23), pages 1-3, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    2. Löffler, Konstantin & Hainsch, Karlo & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Von Hirschhausen, Christian, 2017. "Designing a Model for the Global Energy System—GENeSYS-MOD: An Application of the Open-Source Energy Modeling System (OSeMOSYS)," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(10), pages 1-28.
    3. Wei-Tao Wu & Nadine Aubry & James F. Antaki & Mark L. McKoy & Mehrdad Massoudi, 2017. "Heat Transfer in a Drilling Fluid with Geothermal Applications," Energies, MDPI, vol. 10(9), pages 1-18, September.
    4. Sławomir Kurpaska & Mirosław Janowski & Maciej Gliniak & Anna Krakowiak-Bal & Urszula Ziemiańczyk, 2021. "The Use of Geothermal Energy to Heating Crops under Cover: A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-25, May.
    5. Yildirim, Nurdan & Parmanto, Slamet & Akkurt, Gulden Gokcen, 2019. "Thermodynamic assessment of downhole heat exchangers for geothermal power generation," Renewable Energy, Elsevier, vol. 141(C), pages 1080-1091.
    6. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    7. Theo Renaud & Lehua Pan & Hannah Doran & Gioia Falcone & Patrick G. Verdin, 2021. "Numerical Analysis of Enhanced Conductive Deep Borehole Heat Exchangers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    8. Theo Renaud & Patrick G. Verdin & Gioia Falcone, 2020. "Conjugated Numerical Approach for Modelling DBHE in High Geothermal Gradient Environments," Energies, MDPI, vol. 13(22), pages 1-18, November.
    9. Arkadiusz Kustra & Sylwia Lorenc, 2021. "Financial Balance Analysis of Geothermal Companies in Poland Based on Managerial Cash Flows," Energies, MDPI, vol. 14(23), pages 1-25, November.
    10. Gola, Gianluca & Di Sipio, Eloisa & Facci, Marina & Galgaro, Antonio & Manzella, Adele, 2022. "Geothermal deep closed-loop heat exchangers: A novel technical potential evaluation to answer the power and heat demands," Renewable Energy, Elsevier, vol. 198(C), pages 1193-1209.
    11. Sharma, P. & Al Saedi, A.Q. & Kabir, C.S., 2020. "Geothermal energy extraction with wellbore heat exchanger: Analytical model and parameter evaluation to optimize heat recovery," Renewable Energy, Elsevier, vol. 166(C), pages 1-8.
    12. Dominika Matuszewska & Marta Kuta & Piotr Olczak, 2020. "Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions," Energies, MDPI, vol. 13(13), pages 1-24, July.
    13. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    14. Temiz, Mert & Dincer, Ibrahim, 2022. "A unique ocean and solar based multigenerational system with hydrogen production and thermal energy storage for Arctic communities," Energy, Elsevier, vol. 239(PB).
    15. Gao, Xuefeng & Zhang, Yanjun & Cheng, Yuxiang & Huang, Yibin & Deng, Hao & Ma, Yongjie, 2022. "A novel strategy utilizing local fracture networks to enhance CBHE heat extraction performance: A case study of the Songyuan geothermal field in China," Energy, Elsevier, vol. 255(C).
    16. Lowes, Richard & Woodman, Bridget, 2020. "Disruptive and uncertain: Policy makers’ perceptions on UK heat decarbonisation," Energy Policy, Elsevier, vol. 142(C).
    17. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    18. Agnieszka Operacz & Agnieszka Zachora-Buławska & Izabela Strzelecka & Mariusz Buda & Bogusław Bielec & Karolina Migdał & Tomasz Operacz, 2022. "The Standard Geothermal Plant as an Innovative Combined Renewable Energy Resources System: The Case from South Poland," Energies, MDPI, vol. 15(17), pages 1-23, September.
    19. Yue Zheng & Jinpei Ou & Guangzhao Chen & Xinxin Wu & Xiaoping Liu, 2022. "Mapping Building-Based Spatiotemporal Distributions of Carbon Dioxide Emission: A Case Study in England," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    20. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3541-:d:382236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.