IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2630-d173311.html
   My bibliography  Save this article

Cost-Energy Optimum Pathway for the UK Food Manufacturing Industry to Meet the UK National Emission Targets

Author

Listed:
  • Baboo Lesh Gowreesunker

    (Centre for Sustainable Energy Use in Food Chain, Institute of Energy Futures, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK)

  • Savvas Tassou

    (Centre for Sustainable Energy Use in Food Chain, Institute of Energy Futures, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK)

  • James Atuonwu

    (Centre for Sustainable Energy Use in Food Chain, Institute of Energy Futures, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK)

Abstract

This paper investigates and outlines a cost-energy optimised pathway for the UK food manufacturing industry to attain the national Greenhouse Gas (GHG) emission reduction target of 80%, relative to 1990 levels, by 2050. The paper employs the linear programming platform TIMES, and it models the current and future technology mix of the UK food manufacturing industry. The model considers parameters such as capital costs, operating costs, efficiency and the lifetime of technologies to determine the cheapest pathway to achieve the GHG emission constraints. The model also enables future parametric analyses and can predict the influence of different economic, trade and dietary preferences and the impact of technological investments and policies on emissions. The study showed that for the food manufacturing industry to meet the emission reduction targets by 2050 the use of natural gas as the dominant source of energy in the industry at present, will have to be replaced by decarbonised grid electricity and biogas. This will require investments in Anaerobic Digestion (AD), Combined Heat and Power (CHP) plants driven by biogas and heat pumps powered by decarbonised electricity.

Suggested Citation

  • Baboo Lesh Gowreesunker & Savvas Tassou & James Atuonwu, 2018. "Cost-Energy Optimum Pathway for the UK Food Manufacturing Industry to Meet the UK National Emission Targets," Energies, MDPI, vol. 11(10), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2630-:d:173311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ballarin, A. & Vecchiato, D. & Tempesta, T. & Marangon, F. & Troiano, S., 2011. "Biomass energy production in agriculture: A weighted goal programming analysis," Energy Policy, Elsevier, vol. 39(3), pages 1123-1131, March.
    2. Fais, Birgit & Sabio, Nagore & Strachan, Neil, 2016. "The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets," Applied Energy, Elsevier, vol. 162(C), pages 699-712.
    3. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2013. "Heat recovery with heat pumps in non-energy intensive industry: A detailed bottom-up model analysis in the French food & drink industry," Applied Energy, Elsevier, vol. 111(C), pages 489-504.
    4. Zhang, Bo & Chen, Z.M. & Xia, X.H. & Xu, X.Y. & Chen, Y.B., 2013. "The impact of domestic trade on China's regional energy uses: A multi-regional input–output modeling," Energy Policy, Elsevier, vol. 63(C), pages 1169-1181.
    5. W. E. Kassier, 1963. "An Application Of Linear Programming To Farm Planning," South African Journal of Economics, Economic Society of South Africa, vol. 31(2), pages 118-126, June.
    6. Jones, Philip & Salter, Andrew, 2013. "Modelling the economics of farm-based anaerobic digestion in a UK whole-farm context," Energy Policy, Elsevier, vol. 62(C), pages 215-225.
    7. Canning, Patrick N. & Charles, Ainsley & Huang, Sonja & Polenske, Karen R. & Waters, Arnold, 2010. "Energy Use in the U.S. Food System," Economic Research Report 59381, United States Department of Agriculture, Economic Research Service.
    8. Miguel Brandão & Roland Clift & Llorenç Milà i Canals & Lauren Basson, 2010. "A Life-Cycle Approach to Characterising Environmental and Economic Impacts of Multifunctional Land-Use Systems: An Integrated Assessment in the UK," Sustainability, MDPI, vol. 2(12), pages 1-30, December.
    9. Canning, Patrick N., 2010. "Fuel for Food: Energy Use in the U.S. Food System," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, pages 1-6.
    10. Zglobisz, Natalia & Castillo-Castillo, Arturo & Grimes, Sue & Jones, Peter, 2010. "Influence of UK energy policy on the deployment of anaerobic digestion," Energy Policy, Elsevier, vol. 38(10), pages 5988-5999, October.
    11. Jablonski, Sophie & Strachan, Neil & Brand, Christian & Bauen, Ausilio, 2010. "The role of bioenergy in the UK's energy future formulation and modelling of long-term UK bioenergy scenarios," Energy Policy, Elsevier, vol. 38(10), pages 5799-5816, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yong & Liao, Nuo & Lin, Kunrong, 2021. "Can China's industrial sector achieve energy conservation and emission reduction goals dominated by energy efficiency enhancement? A multi-objective optimization approach," Energy Policy, Elsevier, vol. 149(C).
    2. Qilong Wan & Xiaoqing Zhao & Haibing Liu & Hasan Dinçer & Serhat Yüksel, 2022. "Assessing the New Product Development Process for the Industrial Decarbonization of Sustainable Economies," SAGE Open, , vol. 12(1), pages 21582440211, January.
    3. Spyridon Achinas & Johan Horjus & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "A PESTLE Analysis of Biofuels Energy Industry in Europe," Sustainability, MDPI, vol. 11(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baboo Lesh Gowreesunker & Savvas A. Tassou, 2016. "The Impact of Renewable Energy Policies on the Adoption of Anaerobic Digesters with Farm-Fed Wastes in Great Britain," Energies, MDPI, vol. 9(12), pages 1-23, December.
    2. Abbe Hamilton & Stephen B. Balogh & Adrienna Maxwell & Charles A. S. Hall, 2013. "Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades," Energies, MDPI, vol. 6(3), pages 1-30, March.
    3. Boehm, Rebecca & Wilde, Parke E. & Ver Ploeg, Michele & Costello, Christine & Cash, Sean B., 2018. "A Comprehensive Life Cycle Assessment of Greenhouse Gas Emissions from U.S. Household Food Choices," Food Policy, Elsevier, vol. 79(C), pages 67-76.
    4. Hilario Becerril & Ignacio De los Rios, 2016. "Energy Efficiency Strategies for Ecological Greenhouses: Experiences from Murcia (Spain)," Energies, MDPI, vol. 9(11), pages 1-23, October.
    5. Canning, Patrick & Rehkamp, Sarah, 2016. "The Effects of a CO2 Emissions Tax on American Diets," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235928, Agricultural and Applied Economics Association.
    6. Peters, Christian J. & Picardy, Jamie A. & Darrouzet-Nardi, Amelia & Griffin, Timothy S., 2014. "Feed conversions, ration compositions, and land use efficiencies of major livestock products in U.S. agricultural systems," Agricultural Systems, Elsevier, vol. 130(C), pages 35-43.
    7. Sabine O’Hara & Sigamoney Naicker, 2022. "Local Commitment and Global Reach: Advancing Sustainable Capacity Building in Higher Education," World, MDPI, vol. 3(4), pages 1-19, October.
    8. Rehkamp, Sarah & Canning, Patrick, 2016. "The Effects of American Diets on Food System Energy Use," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235896, Agricultural and Applied Economics Association.
    9. Carlos Francisco Terneus Páez & Oswaldo Viteri Salazar, 2022. "The Water–Energy–Food Nexus: An Analysis of Food Sustainability in Ecuador," Resources, MDPI, vol. 11(10), pages 1-21, September.
    10. Joseph R. Burger & James H. Brown & John W. Day & Tatiana P. Flanagan & Eric D. Roy, 2019. "The Central Role of Energy in the Urban Transition: Global Challenges for Sustainability," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-13, March.
    11. Rae Zimmerman & Quanyan Zhu & Carolyn Dimitri, 2016. "Promoting resilience for food, energy, and water interdependencies," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 50-61, March.
    12. Erika Allen Wolters & Brent S. Steel & Sydney Anderson & Heather Moline, 2021. "The Future of Food: Understanding Public Preferences for the Management of Agricultural Resources," IJERPH, MDPI, vol. 18(13), pages 1-20, June.
    13. Li, Francis G.N. & Trutnevyte, Evelina, 2017. "Investment appraisal of cost-optimal and near-optimal pathways for the UK electricity sector transition to 2050," Applied Energy, Elsevier, vol. 189(C), pages 89-109.
    14. Sun, Yong & Liu, Baoyin & Sun, Zhongrui & Yang, Ruijia, 2023. "Inter-regional cooperation in the transfers of energy-intensive industry: An evolutionary game approach," Energy, Elsevier, vol. 282(C).
    15. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    16. Zhang, Yan & Zheng, Hongmei & Yang, Zhifeng & Su, Meirong & Liu, Gengyuan & Li, Yanxian, 2015. "Multi-regional input–output model and ecological network analysis for regional embodied energy accounting in China," Energy Policy, Elsevier, vol. 86(C), pages 651-663.
    17. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    18. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    19. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    20. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2630-:d:173311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.