IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v62y2013icp215-225.html
   My bibliography  Save this article

Modelling the economics of farm-based anaerobic digestion in a UK whole-farm context

Author

Listed:
  • Jones, Philip
  • Salter, Andrew

Abstract

Anaerobic digestion (AD) technologies convert organic wastes and crops into methane-rich biogas for heating, electricity generation and vehicle fuel. Farm-based AD has proliferated in some EU countries, driven by favourable policies promoting sustainable energy generation and GHG mitigation. Despite increased state support there are still few AD plants on UK farms leading to a lack of normative data on viability of AD in the whole-farm context. Farmers and lenders are therefore reluctant to fund AD projects and policy makers are hampered in their attempts to design policies that adequately support the industry. Existing AD studies and modelling tools do not adequately capture the farm context within which AD interacts. This paper demonstrates a whole-farm, optimisation modelling approach to assess the viability of AD in a more holistic way, accounting for such issues as: AD scale, synergies and conflicts with other farm enterprises, choice of feedstocks, digestate use and impact on farm Net Margin. This modelling approach demonstrates, for example, that: AD is complementary to dairy enterprises, but competes with arable enterprises for farm resources. Reduced nutrient purchases significantly improve Net Margin on arable farms, but AD scale is constrained by the capacity of farmland to absorb nutrients in AD digestate.

Suggested Citation

  • Jones, Philip & Salter, Andrew, 2013. "Modelling the economics of farm-based anaerobic digestion in a UK whole-farm context," Energy Policy, Elsevier, vol. 62(C), pages 215-225.
  • Handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:215-225
    DOI: 10.1016/j.enpol.2013.06.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513006162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.06.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tranter, R.B. & Swinbank, A. & Jones, P.J. & Banks, C.J. & Salter, A.M., 2011. "Assessing the potential for the uptake of on-farm anaerobic digestion for energy production in England," Energy Policy, Elsevier, vol. 39(5), pages 2424-2430, May.
    2. Butler, Allan J. & Hobbs, Phil & Winter, Michael, 2011. "Expanding biogas on UK dairy farms: a question of scale," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108937, Agricultural Economics Society.
    3. Alan Swinbank, 2009. "EU Policies on Bioenergy and their Potential Clash with the WTO," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(3), pages 485-503, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. French, Katherine E., 2019. "Assessing the bioenergy potential of grassland biomass from conservation areas in England," Land Use Policy, Elsevier, vol. 82(C), pages 700-708.
    2. Kari-Anne Lyng & Mia Bjerkestrand & Aina Elstad Stensgård & Pieter Callewaert & Ole Jørgen Hanssen, 2018. "Optimising Anaerobic Digestion of Manure Resources at a Regional Level," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    3. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    4. Kamel Elouhichi & Maria Espinosa Goded & Pavel Ciaian & Angel Perni Llorente & Bouda Vosough Ahmadi & Liesbeth Colen & Sergio Gomez Y Paloma, 2018. "The EU-Wide Individual Farm Model for Common Agricultural Policy Analysis (IFM-CAP v.1): Economic Impacts of CAP Greening," JRC Research Reports JRC108693, Joint Research Centre.
    5. Baboo Lesh Gowreesunker & Savvas Tassou & James Atuonwu, 2018. "Cost-Energy Optimum Pathway for the UK Food Manufacturing Industry to Meet the UK National Emission Targets," Energies, MDPI, vol. 11(10), pages 1-19, October.
    6. Reynolds, Jemma & Kennedy, Robert & Ichapka, Mariah & Agarwal, Abhishek & Oke, Adekunle & Cox, Elsa & Edwards, Christine & Njuguna, James, 2022. "An evaluation of feedstocks for sustainable energy and circular economy practices in a small island community," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Smith, Laurence G. & Jones, Philip J. & Kirk, Guy J.D. & Pearce, Bruce D. & Williams, Adrian. G., 2018. "Modelling the production impacts of a widespread conversion to organic agriculture in England and Wales," Land Use Policy, Elsevier, vol. 76(C), pages 391-404.
    8. Campos-González, Jorge & Gadanakis, Yiorgos & Mancini, Mattia & Bateman, Ian, 2023. "Modelling the economic performance of Recirculating Aquaculture Systems (RAS) at the farm level," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334548, Agricultural Economics Society - AES.
    9. Dahlin, Johannes & Herbes, Carsten & Nelles, Michael, 2015. "Biogas digestate marketing: Qualitative insights into the supply side," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 152-161.
    10. Iria Soto & Berta Sanchez Fernandez & Manuel Gomez Barbero & Thomas Fellmann & Emilio Rodriguez Cerezo, 2017. "Datasets on technological GHG emissions mitigation options for the agriculture sector," JRC Research Reports JRC104084, Joint Research Centre.
    11. Malhotra, Milan & Aboudi, Kaoutar & Pisharody, Lakshmi & Singh, Ayush & Banu, J. Rajesh & Bhatia, Shashi Kant & Varjani, Sunita & Kumar, Sunil & González-Fernández, Cristina & Kumar, Sumant & Singh, R, 2022. "Biorefinery of anaerobic digestate in a circular bioeconomy: Opportunities, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    12. Sean O’Connor & Ehiaze Ehimen & Suresh C. Pillai & Gary Lyons & John Bartlett, 2020. "Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms," Energies, MDPI, vol. 13(3), pages 1-20, February.
    13. Dávid Nagy & Péter Balogh & Zoltán Gabnai & József Popp & Judit Oláh & Attila Bai, 2018. "Economic Analysis of Pellet Production in Co-Digestion Biogas Plants," Energies, MDPI, vol. 11(5), pages 1-21, May.
    14. Baboo Lesh Gowreesunker & Savvas A. Tassou, 2016. "The Impact of Renewable Energy Policies on the Adoption of Anaerobic Digesters with Farm-Fed Wastes in Great Britain," Energies, MDPI, vol. 9(12), pages 1-23, December.
    15. Nixon, J.D., 2016. "Designing and optimising anaerobic digestion systems: A multi-objective non-linear goal programming approach," Energy, Elsevier, vol. 114(C), pages 814-822.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tranter, R.B. & Swinbank, A. & Jones, P.J. & Banks, C.J. & Salter, A.M., 2011. "Assessing the potential for the uptake of on-farm anaerobic digestion for energy production in England," Energy Policy, Elsevier, vol. 39(5), pages 2424-2430, May.
    2. Gamborg, Christian & Anker, Helle Tegner & Sandøe, Peter, 2014. "Ethical and legal challenges in bioenergy governance: Coping with value disagreement and regulatory complexity," Energy Policy, Elsevier, vol. 69(C), pages 326-333.
    3. Röder, Mirjam, 2016. "More than food or fuel. Stakeholder perceptions of anaerobic digestion and land use; a case study from the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 73-81.
    4. Swinbank, Alan & Tranter, Richard & Jones, Philip, 2011. "Mandates, buyouts and fuel-tax rebates: Some economic aspects of biofuel policies using the UK as an example," Energy Policy, Elsevier, vol. 39(3), pages 1249-1253, March.
    5. Bentsen, Niclas Scott & Jack, Michael W. & Felby, Claus & Thorsen, Bo Jellesmark, 2014. "Allocation of biomass resources for minimising energy system greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 506-515.
    6. Ge, Jiaqi & Sutherland, Lee-Ann & Polhill, J. Gary & Matthews, Keith & Miller, Dave & Wardell-Johnson, Douglas, 2017. "Exploring factors affecting on-farm renewable energy adoption in Scotland using large-scale microdata," Energy Policy, Elsevier, vol. 107(C), pages 548-560.
    7. Grundmann, Philipp & Ehlers, Melf-Hinrich & Uckert, Götz, 2012. "Responses of agricultural bioenergy sectors in Brandenburg (Germany) to climate, economic and legal changes: An application of Holling's adaptive cycle," Energy Policy, Elsevier, vol. 48(C), pages 118-129.
    8. Tate, Graham & Mbzibain, Aurelian & Ali, Shaukat, 2012. "A comparison of the drivers influencing farmers' adoption of enterprises associated with renewable energy," Energy Policy, Elsevier, vol. 49(C), pages 400-409.
    9. Robert Ackrill & Adrian Kay, 2010. "WTO Regulations and Bioenergy Sustainability Certification – Synergies and Possible Conflicts," NBS Discussion Papers in Economics 2010/9, Economics, Nottingham Business School, Nottingham Trent University.
    10. Abdo, Hafez & Ackrill, Rob, 2021. "On-farm anaerobic digestion: A disaggregated analysis of the policy challenges for greater uptake," Energy Policy, Elsevier, vol. 153(C).
    11. Atsushi Shimahata & Mohamed Farghali & Masahiko Fujii, 2020. "Factors Influencing the Willingness of Dairy Farmers to Adopt Biogas Plants: A Case Study in Hokkaido, Japan," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    12. Sutherland, Lee-Ann & Peter, Sarah & Zagata, Lukas, 2015. "Conceptualising multi-regime interactions: The role of the agriculture sector in renewable energy transitions," Research Policy, Elsevier, vol. 44(8), pages 1543-1554.
    13. Saadabadi, S. Ali & Thallam Thattai, Aditya & Fan, Liyuan & Lindeboom, Ralph E.F. & Spanjers, Henri & Aravind, P.V., 2019. "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, Elsevier, vol. 134(C), pages 194-214.
    14. Arlo Poletti & Daniela Sicurelli, 2016. "The European Union, Preferential Trade Agreements, and the International Regulation of Sustainable Biofuels," Journal of Common Market Studies, Wiley Blackwell, vol. 54(2), pages 249-266, March.
    15. Chowdhury, Jahedul Islam & Hu, Yukun & Haltas, Ismail & Balta-Ozkan, Nazmiye & Matthew, George Jr. & Varga, Liz, 2018. "Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1153-1178.
    16. Masayasu Asai & Takashi Hayashi & Mitasu Yamamoto, 2019. "Mental Model Analysis of Biogas Energy Perceptions and Policy Reveals Potential Constraints in a Japanese Farm Community," Sustainability, MDPI, vol. 11(1), pages 1-20, January.
    17. Baboo Lesh Gowreesunker & Savvas A. Tassou, 2016. "The Impact of Renewable Energy Policies on the Adoption of Anaerobic Digesters with Farm-Fed Wastes in Great Britain," Energies, MDPI, vol. 9(12), pages 1-23, December.
    18. Tao, Bing & Zhang, Yue & Heaven, Sonia & Banks, Charles J., 2020. "Predicting pH rise as a control measure for integration of CO2 biomethanisation with anaerobic digestion," Applied Energy, Elsevier, vol. 277(C).
    19. Sivek, Martin & Kavina, Pavel & Jirásek, Jakub, 2011. "European Union and the formation of its initiative in energy minerals," Energy Policy, Elsevier, vol. 39(9), pages 5535-5540, September.
    20. Bartolini, Fabio & Viaggi, Davide, 2012. "An analysis of policy scenario effects on the adoption of energy production on the farm: A case study in Emilia–Romagna (Italy)," Energy Policy, Elsevier, vol. 51(C), pages 454-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:215-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.