IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i1p286-d128140.html
   My bibliography  Save this article

Optimising Anaerobic Digestion of Manure Resources at a Regional Level

Author

Listed:
  • Kari-Anne Lyng

    (Ostfold Research, Stadion 4, 1671 Krakeroy, Norway
    The Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway)

  • Mia Bjerkestrand

    (The Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway)

  • Aina Elstad Stensgård

    (Ostfold Research, Stadion 4, 1671 Krakeroy, Norway)

  • Pieter Callewaert

    (Ostfold Research, Stadion 4, 1671 Krakeroy, Norway)

  • Ole Jørgen Hanssen

    (Ostfold Research, Stadion 4, 1671 Krakeroy, Norway
    The Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway)

Abstract

An optimisation model was developed to give decision support on methods of managing manure resources within a region to reduce greenhouse gases and at the same time obtain economic profitability for the farmer. The model was tested by performing a case study on 50 farms in one region in Norway. Based on input data on the number of cattle and pigs on each farm, and the transport distance between each farm and the nearest centralised biogas plant, the model calculates the economic profit of the farmer and the greenhouse gas emissions for three manure management alternatives: (1) no biogas production; (2) farm scale biogas production; and (3) centralised biogas production. The model could minimise the greenhouse gas emissions, maximise the profit for the farmers or a combination of the two. Results from the case study showed that both options for anaerobic digestion (farm scale and centralised biogas production) are beneficial in terms of the reduction of greenhouse gases and can be profitable for the farmers. The case study has validated the functionality and usefulness of the model. Some improvements are suggested for further development and use.

Suggested Citation

  • Kari-Anne Lyng & Mia Bjerkestrand & Aina Elstad Stensgård & Pieter Callewaert & Ole Jørgen Hanssen, 2018. "Optimising Anaerobic Digestion of Manure Resources at a Regional Level," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:1:p:286-:d:128140
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/1/286/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/1/286/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kallis, Giorgos & Gómez-Baggethun, Erik & Zografos, Christos, 2013. "To value or not to value? That is not the question," Ecological Economics, Elsevier, vol. 94(C), pages 97-105.
    2. Siegmeier, Torsten & Blumenstein, Benjamin & Möller, Detlev, 2015. "Farm biogas production in organic agriculture: System implications," Agricultural Systems, Elsevier, vol. 139(C), pages 196-209.
    3. Willeghems, G. & De Clercq, L. & Michels, E. & Meers, E. & Buysse, J., 2016. "Can spatial reallocation of livestock reduce the impact of GHG emissions?," Agricultural Systems, Elsevier, vol. 149(C), pages 11-19.
    4. Kythreotou, Nicoletta & Florides, Georgios & Tassou, Savvas A., 2012. "A proposed methodology for the calculation of direct consumption of fossil fuels and electricity for livestock breeding, and its application to Cyprus," Energy, Elsevier, vol. 40(1), pages 226-235.
    5. Kari-Anne Lyng & Lise Skovsgaard & Henrik Klinge Jacobsen & Ole Jørgen Hanssen, 2020. "The implications of economic instruments on biogas value chains: a case study comparison between Norway and Denmark," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7125-7152, December.
    6. Lantz, Mikael & Svensson, Mattias & Bjornsson, Lovisa & Borjesson, Pal, 2007. "The prospects for an expansion of biogas systems in Sweden--Incentives, barriers and potentials," Energy Policy, Elsevier, vol. 35(3), pages 1830-1843, March.
    7. Lantz, Mikael & Börjesson, Pål, 2014. "Greenhouse gas and energyassessment of the biogas from co-digestion injected into the natural gas grid: A Swedish case-study including effects on soil properties," Renewable Energy, Elsevier, vol. 71(C), pages 387-395.
    8. Jones, Philip & Salter, Andrew, 2013. "Modelling the economics of farm-based anaerobic digestion in a UK whole-farm context," Energy Policy, Elsevier, vol. 62(C), pages 215-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marina Segura & Concepción Maroto & Concepción Ginestar & Baldomero Segura, 2018. "Optimization Models to Improve Estimations and Reduce Nitrogen Excretion from Livestock Production," Sustainability, MDPI, vol. 10(7), pages 1-14, July.
    2. Pietro De Marinis & Omar Ferrari & Erica Allisiardi & Chiara De Mattia & Giuliana Caliandro & Elio Dinuccio & Maurizio Borin & Paolo Ceccon & Guido Sali & Giorgio Provolo, 2021. "Insights about the Choice of Pig Manure Processing System in Three Italian Regions: Piemonte, Friuli Venezia Giulia, and Veneto," Sustainability, MDPI, vol. 13(2), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takman, Johanna & Andersson-Sköld, Yvonne, 2021. "A framework for barriers, opportunities, and potential solutions for renewable energy diffusion: Exemplified by liquefied biogas for heavy trucks," Transport Policy, Elsevier, vol. 110(C), pages 150-160.
    2. Skovsgaard, Lise & Jensen, Ida Græsted, 2018. "Recent trends in biogas value chains explained using cooperative game theory," Energy Economics, Elsevier, vol. 74(C), pages 503-522.
    3. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    4. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    5. Evans, Nicole M. & Carrozzino-Lyon, Amy L. & Galbraith, Betsy & Noordyk, Julia & Peroff, Deidre M. & Stoll, John & Thompson, Aaron & Winden, Matthew W. & Davis, Mark A., 2019. "Integrated ecosystem service assessment for landscape conservation design in the Green Bay watershed, Wisconsin," Ecosystem Services, Elsevier, vol. 39(C).
    6. Tannaz Jahaniaghdam & Amir Reza Mamdoohi & Salman Aghidi Kheyrabadi & Mehdi Mehryar & Francesco Ciari, 2023. "Preferences for Alternative Fuel Trucks among International Transport Companies," World, MDPI, vol. 4(4), pages 1-21, November.
    7. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    8. Tranter, R.B. & Swinbank, A. & Jones, P.J. & Banks, C.J. & Salter, A.M., 2011. "Assessing the potential for the uptake of on-farm anaerobic digestion for energy production in England," Energy Policy, Elsevier, vol. 39(5), pages 2424-2430, May.
    9. Mariana Oliveira & Mécia Miguel & Sven Kevin Langen & Amos Ncube & Amalia Zucaro & Gabriella Fiorentino & Renato Passaro & Remo Santagata & Nick Coleman & Benjamin H. Lowe & Sergio Ulgiati & Andrea Ge, 2021. "Circular Economy and the Transition to a Sustainable Society: Integrated Assessment Methods for a New Paradigm," Circular Economy and Sustainability,, Springer.
    10. Florian V Eppink & Matthew Winden & Will C C Wright & Suzie Greenhalgh, 2016. "Non-Market Values in a Cost-Benefit World: Evidence from a Choice Experiment," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-12, October.
    11. Alec Foster, 2021. "Volunteer Urban Environmental Stewardship, Emotional Economies of Care, and Productive Power in Philadelphia," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
    12. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    13. Uusitalo, V. & Soukka, R. & Horttanainen, M. & Niskanen, A. & Havukainen, J., 2013. "Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector," Renewable Energy, Elsevier, vol. 51(C), pages 132-140.
    14. Lundgren, Jakob, 2022. "Unity through disunity: Strengths, values, and tensions in the disciplinary discourse of ecological economics," Ecological Economics, Elsevier, vol. 191(C).
    15. Raymond, Christopher M. & Kenter, Jasper O. & Plieninger, Tobias & Turner, Nancy J. & Alexander, Karen A., 2014. "Comparing instrumental and deliberative paradigms underpinning the assessment of social values for cultural ecosystem services," Ecological Economics, Elsevier, vol. 107(C), pages 145-156.
    16. Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
    17. Melathopoulos, Andony P. & Stoner, Alexander M., 2015. "Critique and transformation: On the hypothetical nature of ecosystem service value and its neo-Marxist, liberal and pragmatist criticisms," Ecological Economics, Elsevier, vol. 117(C), pages 173-181.
    18. Lauriane Mouysset & Luc Doyen & François Léger & Frédéric Jiguet & Tim G. Benton, 2018. "Operationalizing Sustainability as a Safe Policy Space," Sustainability, MDPI, vol. 10(10), pages 1-9, October.
    19. Lönnqvist, Tomas & Silveira, Semida & Sanches-Pereira, Alessandro, 2013. "Swedish resource potential from residues and energy crops to enhance biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 298-314.
    20. Schaffer, Axel & Düvelmeyer, Claudia, 2016. "Regional drivers of on-farm energy production in Bavaria," Energy Policy, Elsevier, vol. 95(C), pages 361-369.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:1:p:286-:d:128140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.