IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i7p684-d1619376.html
   My bibliography  Save this article

Climate-Driven Invasion Risks of Japanese Beetle ( Popillia japonica Newman) in Europe Predicted Through Species Distribution Modelling

Author

Listed:
  • Giuseppe Pulighe

    (CREA-Research Centre for Agricultural Policies and Bioeconomy, 00187 Rome, Italy)

  • Flavio Lupia

    (CREA-Research Centre for Agricultural Policies and Bioeconomy, 00187 Rome, Italy)

  • Valentina Manente

    (University of Parma, 43121 Parma, Italy)

Abstract

Invasive species pose a growing threat to global biodiversity, agricultural productivity, and ecosystem health, as climate change worsens their spread. This study focused on modelling the current and projected distribution of the Japanese beetle ( Popillia japonica Newman), an invasive pest with potentially devastating impacts on crops and natural vegetation across Europe. Using the MaxEnt species distribution model, we integrated beetle occurrence data with bioclimatic variables, analyzing current and future climate scenarios based on Shared Socio-economic Pathways (SSP1-2.6, SSP2-4.5, SSP5-8.5) for near-term (2021–2040) and mid-term (2041–2060) periods. By reclassifying the model results, we identified European regions with negligible, low, medium, and high exposure to this invasive pest under climate change pathways. The results identified regions in central Europe covering an area of 83,807 km 2 that are currently at medium to high risk of Japanese beetle infestation. Future projections suggest northward expansion with suitable areas potentially increasing to 120,436 km 2 in the worst-case scenario, particularly in northern Italy, southern Germany, the Western Balkans, and parts of France. These spatially explicit findings can inform targeted monitoring, early detection, and management strategies to mitigate the economic and ecological threats posed by the Japanese beetle. Integrating species distribution modelling with climate change scenarios is imperative for science-based policies to tackle the growing challenge of biological invasions. This research provides a framework for assessing invasion risks at the European scale and guiding adaptive responses in agricultural and natural systems.

Suggested Citation

  • Giuseppe Pulighe & Flavio Lupia & Valentina Manente, 2025. "Climate-Driven Invasion Risks of Japanese Beetle ( Popillia japonica Newman) in Europe Predicted Through Species Distribution Modelling," Agriculture, MDPI, vol. 15(7), pages 1-14, March.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:7:p:684-:d:1619376
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/7/684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/7/684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandru-Mihai Pintilioaie & Lucian Sfîcă & Emanuel Stefan Baltag, 2023. "Climatic Niche of an Invasive Mantid Species in Europe: Predicted New Areas for Species Expansion," Sustainability, MDPI, vol. 15(13), pages 1-12, June.
    2. Francesca Della Rocca & Pietro Milanesi, 2022. "The New Dominator of the World: Modeling the Global Distribution of the Japanese Beetle under Land Use and Climate Change Scenarios," Land, MDPI, vol. 11(4), pages 1-17, April.
    3. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    4. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    5. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    6. Giuseppe Pulighe & Antonella Fonzo & Marco Gaito & Sabrina Giuca & Flavio Lupia & Guido Bonati & Simonetta Leo, 2024. "Climate change impact on yield and income of Italian agriculture system: a scoping review," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 12(1), pages 1-21, December.
    7. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    2. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    3. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    4. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Coppens, Léo & Venmans, Frank, 2025. "The welfare properties of climate targets," Ecological Economics, Elsevier, vol. 228(C).
    6. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    7. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    8. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    9. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    10. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    11. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    12. Sánchez-García, Daniel & Bienvenido-Huertas, David & Kim, Jungsoo & Pisello, Anna Laura, 2025. "Exploring the energy implications of human thermal adaptation to hot temperatures in present and future scenarios: a parametric simulation study," Energy, Elsevier, vol. 325(C).
    13. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    14. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    15. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    16. Julien CALAS & Antoine GODIN & Julie MAURIN (AFD) & and Etienne ESPAGNE (World Bank), 2022. "Global biodiversity scenarios: what do they tell us for biodiversity-related socioeconomic impacts?," Working Paper 1a39419b-ef1d-4b82-a7be-d, Agence française de développement.
    17. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    18. Moyer, Jonathan D. & Hedden, Steve, 2020. "Are we on the right path to achieve the sustainable development goals?," World Development, Elsevier, vol. 127(C).
    19. Johannes Gallé & Anja Katzenberger, 2025. "Indian Agriculture Under Climate Change: The Competing Effect of Temperature and Rainfall Anomalies," Economics of Disasters and Climate Change, Springer, vol. 9(1), pages 53-105, March.
    20. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:7:p:684-:d:1619376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.