IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v45y2011i9p951-965.html
   My bibliography  Save this article

On the fundamental diagram and supply curves for congested urban networks

Author

Listed:
  • Liu, Ronghui
  • May, Tony
  • Shepherd, Simon

Abstract

Macroscopic fundamental diagrams (MFD) of traffic for some networks have been shown to have similar shape to those for single links. They have erroneously been used to help estimate the level of travel in congested networks. We argue that supply curves, which track vehicles in their passage through congested networks, are needed for this purpose, and that they differ from the performance curves generated from MFD. We use a microsimulation model, DRACULA and two networks, one synthesizing the network for Cambridge, England, and one of the city of York, England, to explore the nature of performance curves and supply curves under differing patterns of demand. We show that supply curves differ from performance curves once the onset of congestion is reached, and that the incorrect use of performance curves to estimate demand can thus seriously underestimate traffic levels, the costs of congestion, and the value of congestion relief measures. We also show that network aggregated supply curves are sensitive to the temporal distribution of demand and, potentially, to the spatial distribution of demand. The shape of the supply curve also differs between origin-destination movements within a given network. We argue that supply curves for higher levels of demand cannot be observed in normal traffic conditions, and specify ways in which they can be determined from microsimulation and, potentially, by extrapolating observed data. We discuss the implications of these findings for conventional modelling of network management policies, and for these policies themselves.

Suggested Citation

  • Liu, Ronghui & May, Tony & Shepherd, Simon, 2011. "On the fundamental diagram and supply curves for congested urban networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 951-965, November.
  • Handle: RePEc:eee:transa:v:45:y:2011:i:9:p:951-965
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856411000632
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gernot Grabher & Walter W. Powell (ed.), 2004. "Networks," Books, Edward Elgar Publishing, volume 0, number 2771.
    2. Evans, Alan W, 1992. "Road Congestion: The Diagrammatic Analysis: Comment," Journal of Political Economy, University of Chicago Press, vol. 100(1), pages 211-217, February.
    3. Newbery, David M, 1990. "Pricing and Congestion: Economic Principles Relevant to Pricing Roads," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 6(2), pages 22-38, Summer.
    4. Verhoef, Erik T., 1999. "Time, speeds, flows and densities in static models of road traffic congestion and congestion pricing," Regional Science and Urban Economics, Elsevier, vol. 29(3), pages 341-369, May.
    5. Kenneth Button & Erik Verhoef (ed.), 1998. "Road Pricing, Traffic Congestion and the Environment," Books, Edward Elgar Publishing, number 940.
    6. Harold Greenberg, 1959. "An Analysis of Traffic Flow," Operations Research, INFORMS, vol. 7(1), pages 79-85, February.
    7. Hiroshi Ohta, 2001. "Probing A Traffic Congestion Controversy: Density and Flow Scrutinized," Journal of Regional Science, Wiley Blackwell, vol. 41(4), pages 659-680, November.
    8. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    9. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    10. Nikolas Geroliminis & David M. Levinson, 2009. "Cordon Pricing Consistent with the Physics of Overcrowding," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 219-240, Springer.
    11. Robert Herman & Siamak Ardekani, 1984. "Characterizing Traffic Conditions in Urban Areas," Transportation Science, INFORMS, vol. 18(2), pages 101-140, May.
    12. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    13. Ronghui Liu, 2010. "Traffic Simulation with DRACULA," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 295-322, Springer.
    14. Ronghui Liu & James Tate, 2004. "Network effects of intelligent speed adaptation systems," Transportation, Springer, vol. 31(3), pages 297-325, August.
    15. Liu, Ronghui & Van Vliet, Dirck & Watling, David, 2006. "Microsimulation models incorporating both demand and supply dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 125-150, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Ronghui & Hyman, Geoff, 2012. "Modelling motorway merge: The current practice in the UK and towards establishing general principles," Transport Policy, Elsevier, vol. 24(C), pages 199-210.
    2. Arnott, Richard, 2013. "A bathtub model of downtown traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 110-121.
    3. May, Anthony D., 2018. "The contribution of Jules Dupuit and the case for further inter-disciplinary collaboration," Transport Policy, Elsevier, vol. 70(C), pages 29-31.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    2. Chen, Zhi & Wu, Wen-Xiang & Huang, Hai-Jun & Shang, Hua-Yan, 2022. "Modeling traffic dynamics in periphery-downtown urban networks combining Vickrey's theory with Macroscopic Fundamental Diagram: user equilibrium, system optimum, and cordon pricing," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 278-303.
    3. Verhoef, Erik T., 2003. "Inside the queue:: hypercongestion and road pricing in a continuous time-continuous place model of traffic congestion," Journal of Urban Economics, Elsevier, vol. 54(3), pages 531-565, November.
    4. Button, Kenneth, 2004. "1. The Rationale For Road Pricing: Standard Theory And Latest Advances," Research in Transportation Economics, Elsevier, vol. 9(1), pages 3-25, January.
    5. Fosgerau, Mogens & Small, Kenneth A., 2013. "Hypercongestion in downtown metropolis," Journal of Urban Economics, Elsevier, vol. 76(C), pages 122-134.
    6. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    7. May, Anthony D., 2018. "The contribution of Jules Dupuit and the case for further inter-disciplinary collaboration," Transport Policy, Elsevier, vol. 70(C), pages 29-31.
    8. Tsekeris, Theodore & Geroliminis, Nikolas, 2013. "City size, network structure and traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 1-14.
    9. Erik T. Verhoef, 1998. "An Integrated Dynamic Model of Road Traffic Congestion based on Simple Car-Following Theory," Tinbergen Institute Discussion Papers 98-030/3, Tinbergen Institute.
    10. Arnott, Richard, 2013. "A bathtub model of downtown traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 110-121.
    11. Fosgerau, Mogens & de Palma, André, 2012. "Congestion in a city with a central bottleneck," Journal of Urban Economics, Elsevier, vol. 71(3), pages 269-277.
    12. Nikolas Geroliminis & David M. Levinson, 2009. "Cordon Pricing Consistent with the Physics of Overcrowding," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 219-240, Springer.
    13. Bao, Yue & Verhoef, Erik T. & Koster, Paul, 2021. "Leaving the tub: The nature and dynamics of hypercongestion in a bathtub model with a restricted downstream exit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    14. Verhoef, Erik T., 2005. "Speed-flow relations and cost functions for congested traffic: Theory and empirical analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 792-812.
    15. Zheng, Nan & Geroliminis, Nikolas, 2013. "On the distribution of urban road space for multimodal congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 326-341.
    16. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    17. Yildirimoglu, Mehmet & Ramezani, Mohsen, 2020. "Demand management with limited cooperation among travellers: A doubly dynamic approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 267-284.
    18. Gonzales, Eric J. & Daganzo, Carlos F., 2011. "Morning Commute with Competing Modes and DistributedDemand: User Equilibrium, System Optimum, and Pricing," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0ft1z2ps, Institute of Transportation Studies, UC Berkeley.
    19. Martin Koning, 2010. "The Social Cost of Road Congestion in Ile-de-France Region (and France): Empirical Evidences from the Paris Ring-Road," Working Papers halshs-00467888, HAL.
    20. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:45:y:2011:i:9:p:951-965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.