IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v141y2020icp221-247.html
   My bibliography  Save this article

Quantifying the employment accessibility benefits of shared automated vehicle mobility services: Consumer welfare approach using logsums

Author

Listed:
  • Ahmed, Tanjeeb
  • Hyland, Michael
  • Sarma, Navjyoth J.S.
  • Mitra, Suman
  • Ghaffar, Arash

Abstract

The goal of this study is to assess and quantify the potential employment accessibility benefits of shared-use automated vehicle (AV) mobility service (SAMS) modes across a large diverse metropolitan region considering heterogeneity in the working population. To meet this goal, this study proposes employing a welfare-based (i.e. logsum-based) measure of accessibility, obtained via estimating a hierarchical work destination-commute mode choice model. The employment accessibility logsum measure incorporates the spatial distribution of worker residences and employment opportunities, the attributes of the available commute modes, and the characteristics of individual workers. The study further captures heterogeneity of workers using a latent class analysis (LCA) approach to account for different worker clusters valuing different types of employment opportunities differently, in which the socio-demographic characteristics of workers are the LCA model inputs. The accessibility analysis results in Southern California indicate: (i) the accessibility benefit differences across latent classes are modest but young workers and low-income workers do see higher benefits than high- and middle-income workers; (ii) there are substantial spatial differences in accessibility benefits with workers living in lower density areas benefiting more than workers living in high-density areas; (iii) nearly all the accessibility benefits come from the SAMS-only mode as opposed to the SAMS+Transit mode; and (iv) the SAMS cost per mile assumption significantly impacts the magnitude of the overall employment accessibility benefits.

Suggested Citation

  • Ahmed, Tanjeeb & Hyland, Michael & Sarma, Navjyoth J.S. & Mitra, Suman & Ghaffar, Arash, 2020. "Quantifying the employment accessibility benefits of shared automated vehicle mobility services: Consumer welfare approach using logsums," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 221-247.
  • Handle: RePEc:eee:transa:v:141:y:2020:i:c:p:221-247
    DOI: 10.1016/j.tra.2020.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856420307072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merlin, Louis A. & Hu, Lingqian, 2017. "Does competition matter in measures of job accessibility? Explaining employment in Los Angeles," Journal of Transport Geography, Elsevier, vol. 64(C), pages 77-88.
    2. Meyer, Jonas & Becker, Henrik & Bösch, Patrick M. & Axhausen, Kay W., 2017. "Autonomous vehicles: The next jump in accessibilities?," Research in Transportation Economics, Elsevier, vol. 62(C), pages 80-91.
    3. Grengs, Joe, 2010. "Job accessibility and the modal mismatch in Detroit," Journal of Transport Geography, Elsevier, vol. 18(1), pages 42-54.
    4. Fan, Yingling & Guthrie, Andrew E & Levinson, David M, 2012. "Impact of light rail implementation on labor market accessibility: A transportation equity perspective," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(3), pages 28-39.
    5. Long T. Truong & Chris Gruyter & Graham Currie & Alexa Delbosc, 2017. "Estimating the trip generation impacts of autonomous vehicles on car travel in Victoria, Australia," Transportation, Springer, vol. 44(6), pages 1279-1292, November.
    6. Nema Dean & Adrian Raftery, 2010. "Latent class analysis variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 11-35, February.
    7. Mitra, Suman K. & Saphores, Jean-Daniel M., 2017. "Carless in California: Green choice or misery?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 1-12.
    8. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    9. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    10. Small, Kenneth A & Rosen, Harvey S, 1981. "Applied Welfare Economics with Discrete Choice Models," Econometrica, Econometric Society, vol. 49(1), pages 105-130, January.
    11. Hyland, Michael & Mahmassani, Hani S., 2020. "Operational benefits and challenges of shared-ride automated mobility-on-demand services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 251-270.
    12. de Jong, Gerard & Daly, Andrew & Pieters, Marits & van der Hoorn, Toon, 2007. "The logsum as an evaluation measure: Review of the literature and new results," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 874-889, November.
    13. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    14. Gaurav Vyas & Pooneh Famili & Peter Vovsha & Daniel Fay & Ashish Kulshrestha & Greg Giaimo & Rebekah Anderson, 2019. "Incorporating features of autonomous vehicles in activity-based travel demand model for Columbus, OH," Transportation, Springer, vol. 46(6), pages 2081-2102, December.
    15. Chen, T. Donna & Kockelman, Kara M. & Hanna, Josiah P., 2016. "Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 243-254.
    16. Wardman, Mark, 2004. "Public transport values of time," Transport Policy, Elsevier, vol. 11(4), pages 363-377, October.
    17. Lingqian Hu, 2015. "Job Accessibility of the Poor in Los Angeles," Journal of the American Planning Association, Taylor & Francis Journals, vol. 81(1), pages 30-45, January.
    18. El-Geneidy, Ahmed & Levinson, David & Diab, Ehab & Boisjoly, Genevieve & Verbich, David & Loong, Charis, 2016. "The cost of equity: Assessing transit accessibility and social disparity using total travel cost," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 302-316.
    19. Milakis, Dimitris & Kroesen, Maarten & van Wee, Bert, 2018. "Implications of automated vehicles for accessibility and location choices: Evidence from an expert-based experiment," Journal of Transport Geography, Elsevier, vol. 68(C), pages 142-148.
    20. Mitra, Suman K. & Saphores, Jean-Daniel M., 2019. "Why do they live so far from work? Determinants of long-distance commuting in California," Journal of Transport Geography, Elsevier, vol. 80(C).
    21. Mizuki Kawabata & Qing Shen, 2006. "Job Accessibility as an Indicator of Auto-Oriented Urban Structure: A Comparison of Boston and Los Angeles with Tokyo," Environment and Planning B, , vol. 33(1), pages 115-130, February.
    22. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    23. Felipe González & Carlos Melo-Riquelme & Louis Grange, 2016. "A combined destination and route choice model for a bicycle sharing system," Transportation, Springer, vol. 43(3), pages 407-423, May.
    24. Hani S. Mahmassani, 2016. "50th Anniversary Invited Article—Autonomous Vehicles and Connected Vehicle Systems: Flow and Operations Considerations," Transportation Science, INFORMS, vol. 50(4), pages 1140-1162, November.
    25. Perrine, Kenneth A. & Kockelman, Kara M. & Huang, Yantao, 2020. "Anticipating long-distance travel shifts due to self-driving vehicles," Journal of Transport Geography, Elsevier, vol. 82(C).
    26. Standen, Christopher & Greaves, Stephen & Collins, Andrew T. & Crane, Melanie & Rissel, Chris, 2019. "The value of slow travel: Economic appraisal of cycling projects using the logsum measure of consumer surplus," Transportation Research Part A: Policy and Practice, Elsevier, vol. 123(C), pages 255-268.
    27. Jeffrey Newman & Vincent Bernardin, 2010. "Hierarchical ordering of nests in a joint mode and destination choice model," Transportation, Springer, vol. 37(4), pages 677-688, July.
    28. Mathieu Bunel & Elisabeth Tovar, 2014. "Key Issues in Local Job Accessibility Measurement: Different Models Mean Different Results," Urban Studies, Urban Studies Journal Limited, vol. 51(6), pages 1322-1338, May.
    29. Beckman, Richard J. & Baggerly, Keith A. & McKay, Michael D., 1996. "Creating synthetic baseline populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 415-429, November.
    30. Felix Becker & Kay W. Axhausen, 2017. "Literature review on surveys investigating the acceptance of automated vehicles," Transportation, Springer, vol. 44(6), pages 1293-1306, November.
    31. Linzer, Drew A. & Lewis, Jeffrey B., 2011. "poLCA: An R Package for Polytomous Variable Latent Class Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i10).
    32. Eric J. Miller, 2018. "Accessibility: measurement and application in transportation planning," Transport Reviews, Taylor & Francis Journals, vol. 38(5), pages 551-555, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Gao & Sen Li, 2023. "Regulating For-Hire Autonomous Vehicles for An Equitable Multimodal Transportation Network," Papers 2301.05798, arXiv.org, revised Oct 2023.
    2. Zou, Tianqi & Aemmer, Zack & MacKenzie, Don & Laberteaux, Ken, 2022. "A framework for estimating commute accessibility and adoption of ridehailing services under functional improvements from vehicle automation," Journal of Transport Geography, Elsevier, vol. 102(C).
    3. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    4. Bahk, Younghun & Hyland, Michael & An, Sunghi, 2024. "Re-envisioning the Park-and-Ride concept for the automated vehicle (AV) era with Private-to-Shared AV transfer stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    5. Gao, Jing & Li, Sen, 2024. "Regulating for-hire autonomous vehicles for an equitable multimodal transportation network," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    6. Monika Hamerska & Monika Ziółko & Patryk Stawiarski, 2022. "A Sustainable Transport System—The MMQUAL Model of Shared Micromobility Service Quality Assessment," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    7. Hosseinzadeh, Aryan & Baghbani, Asiye, 2020. "Walking Trip Generation and Built Environment: A Comparative Study on Trip Purposes," MPRA Paper 109025, University Library of Munich, Germany.
    8. Sarri, Paraskevi & Kaparias, Ioannis & Preston, John & Simmonds, David, 2023. "Using Land Use and Transportation Interaction (LUTI) models to determine land use effects from new vehicle transportation technologies; a regional scale of analysis," Transport Policy, Elsevier, vol. 135(C), pages 91-111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    2. Singer, Matan E. & Cohen-Zada, Aviv L. & Martens, Karel, 2022. "Core versus periphery: Examining the spatial patterns of insufficient accessibility in U.S. metropolitan areas," Journal of Transport Geography, Elsevier, vol. 100(C).
    3. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    4. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    5. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    6. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    7. Merlin, Louis A. & Hu, Lingqian, 2017. "Does competition matter in measures of job accessibility? Explaining employment in Los Angeles," Journal of Transport Geography, Elsevier, vol. 64(C), pages 77-88.
    8. Du, Manqing & Zhang, Tingru & Liu, Jinting & Xu, Zhigang & Liu, Peng, 2022. "Rumors in the air? Exploring public misconceptions about automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 237-252.
    9. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    10. Dong Liu & Mei‐Po Kwan, 2020. "Measuring Job Accessibility Through Integrating Travel Time, Transit Fare And Income: A Study Of The Chicago Metropolitan Area," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 111(4), pages 671-685, September.
    11. Wu, Jingwen & Liao, Hua & Wang, Jin-Wei, 2020. "Analysis of consumer attitudes towards autonomous, connected, and electric vehicles: A survey in China," Research in Transportation Economics, Elsevier, vol. 80(C).
    12. Carrese, Stefano & Nigro, Marialisa & Patella, Sergio Maria & Toniolo, Eleonora, 2019. "A preliminary study of the potential impact of autonomous vehicles on residential location in Rome," Research in Transportation Economics, Elsevier, vol. 75(C), pages 55-61.
    13. Xiao, Weiye & Wei, Yehua Dennis & Wan, Neng, 2021. "Modeling job accessibility using online map data: An extended two-step floating catchment area method with multiple travel modes," Journal of Transport Geography, Elsevier, vol. 93(C).
    14. Maeng, Kyuho & Jeon, Seung Ryong & Park, Taeho & Cho, Youngsang, 2021. "Network effects of connected and autonomous vehicles in South Korea: A consumer preference approach," Research in Transportation Economics, Elsevier, vol. 90(C).
    15. Rubén Cordera & Soledad Nogués & Esther González-González & José Luis Moura, 2021. "Modeling the Impacts of Autonomous Vehicles on Land Use Using a LUTI Model," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    16. Alexandros Dimitropoulos & Jos N. van Ommeren & Paul Koster & Piet Rietveld†, 2014. "Welfare Effects of Distortionary Tax Incentives under Preference Heterogeneity: An Application to Employer-provided Electric Cars," Tinbergen Institute Discussion Papers 14-064/VIII, Tinbergen Institute.
    17. Cui, Boer & Boisjoly, Geneviève & El-Geneidy, Ahmed & Levinson, David, 2019. "Accessibility and the journey to work through the lens of equity," Journal of Transport Geography, Elsevier, vol. 74(C), pages 269-277.
    18. de Ayala, Amaia & Hoyos, David & Mariel, Petr, 2015. "Suitability of discrete choice experiments for landscape management under the European Landscape Convention," Journal of Forest Economics, Elsevier, vol. 21(2), pages 79-96.
    19. Kelobonye, Keone & McCarney, Gary & Xia, Jianhong (Cecilia) & Swapan, Mohammad Shahidul Hasan & Mao, Feng & Zhou, Heng, 2019. "Relative accessibility analysis for key land uses: A spatial equity perspective," Journal of Transport Geography, Elsevier, vol. 75(C), pages 82-93.
    20. Elisa Borowski & Alireza Ermagun & David Levinson, 2018. "Disparity of Access: Variations in Transit Service by Race, Ethnicity, Income, and Auto Availability," Working Papers 175, University of Minnesota: Nexus Research Group.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:141:y:2020:i:c:p:221-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.