IDEAS home Printed from
   My bibliography  Save this article

Creating synthetic baseline populations


  • Beckman, Richard J.
  • Baggerly, Keith A.
  • McKay, Michael D.


To develop activity-based travel models using microsimulation, individual travelers and households must be considered. Methods for creating baseline synthetic populations of households and persons using 1990 census data are given. Summary tables from the Census Bureau STF-3A are used in conjunction with the Public Use Microdata Sample (PUMS), and Iterative Proportional Fitting (IPF) is applied to estimate the proportion of households in a block group or census tract with a desired combination of demographics. Households are generated by selection of households from the associated PUMS according to these proportions. The tables of demographic proportions which are exploited here to make household selections from the PUMS may be used in traditional modeling. The procedures are validated by creating pseudo census tracts from PUMS samples and considering the joint distribution of the size of households and the number of vehicles in the households. It is shown that the joint distributions created by these methods do not differ substantially from the true values. Additionally the effects of small changes in the procedure, such as imputation of additional demographics and adding partial counts to the constructed demographic tables are discussed in the paper.

Suggested Citation

  • Beckman, Richard J. & Baggerly, Keith A. & McKay, Michael D., 1996. "Creating synthetic baseline populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 415-429, November.
  • Handle: RePEc:eee:transa:v:30:y:1996:i:6:p:415-429

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Gärling, Tommy & Kwan, Mei-Po & Golledge, Reginald G., 1994. "Computational-process modelling of household activity scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 28(5), pages 355-364, October.
    2. Bhat, Chandra R. & Koppelman, Frank S., 1993. "A conceptual framework of individual activity program generation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(6), pages 433-446, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommy Gärling & Robert Gillholm & William Montgomery, 1999. "The role of anticipated time pressure in activity scheduling," Transportation, Springer, vol. 26(2), pages 173-191, May.
    2. Gärling, Tommy & Gärling, Anita & Johansson, Anders, 2000. "Household choices of car-use reduction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(5), pages 309-320, June.
    3. Chen, Quizi, 2001. "An Exploration of Activity Scheduling and Rescheduling Processes," University of California Transportation Center, Working Papers qt9kb4q6vt, University of California Transportation Center.
    4. John Gliebe & Frank Koppelman, 2002. "A model of joint activity participation between household members," Transportation, Springer, vol. 29(1), pages 49-72, February.
    5. Zhou Hui-fen & Li Zhen-shan & Xue Dong-qian & Lei Yang, 2012. "Time Use Patterns Between Maintenance, Subsistence and Leisure Activities: A Case Study in China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 105(1), pages 121-136, January.
    6. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    7. Arentze, Theo & Timmermans, Harry, 2007. "Parametric action decision trees: Incorporating continuous attribute variables into rule-based models of discrete choice," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 772-783, August.
    8. Mouratidis, Kostas, 2019. "Built environment and leisure satisfaction: The role of commute time, social interaction, and active travel," Journal of Transport Geography, Elsevier, vol. 80(C).
    9. Yasmin, Farhana & Morency, Catherine & Roorda, Matthew J., 2015. "Assessment of spatial transferability of an activity-based model, TASHA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 200-213.
    10. Chandra Bhat & Rajul Misra, 1999. "Discretionary activity time allocation of individuals between in-home and out-of-home and between weekdays and weekends," Transportation, Springer, vol. 26(2), pages 193-229, May.
    11. Tang, Jia & Mokhtarian, Patricia L. & Zhen, Feng, 2020. "How do passengers allocate and evaluate their travel time? Evidence from a survey on the Shanghai–Nanjing high speed rail corridor, China," Journal of Transport Geography, Elsevier, vol. 85(C).
    12. Amandine Chevalier & Frédéric Lantz, 2013. "Personal car, public transport and other alternatives? Predicting potential modal shifts from multinomial logit models and bootstrap confidence intervals," Working Papers hal-02474779, HAL.
    13. Sean Doherty & Eric Miller, 2000. "A computerized household activity scheduling survey," Transportation, Springer, vol. 27(1), pages 75-97, February.
    14. Saxena, Shobhit & Pinjari, Abdul Rawoof & Paleti, Rajesh, 2022. "A multiple discrete-continuous extreme value model with ordered preferences (MDCEV-OP): Modelling framework for episode-level activity participation and time-use analysis," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 259-283.
    15. Rachid Belaroussi & Younes Delhoum, 2024. "Forecasting Daily Activity Plans of a Synthetic Population in an Upcoming District," Forecasting, MDPI, vol. 6(2), pages 1-26, May.
    16. Scott, Darren M. & Kanaroglou, Pavlos S., 2002. "An activity-episode generation model that captures interactions between household heads: development and empirical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 36(10), pages 875-896, December.
    17. Currans, Kristina M. & Clifton, Kelly J., 2018. "Exploring ITE’s Trip Generation Manual: Assessing age of data and land-use taxonomy in vehicle trip generation for transportation impact analyses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 387-398.
    18. Gärling, Tommy & Eek, Daniel & Loukopoulos, Peter & Fujii, Satoshi & Johansson-Stenman, Olof & Kitamura, Ryuichi & Pendyala, Ram & Vilhelmson, Bertil, 2002. "A conceptual analysis of the impact of travel demand management on private car use," Transport Policy, Elsevier, vol. 9(1), pages 59-70, January.
    19. Habib, Khandker Nurul & Sasic, Ana & Weis, Claude & Axhausen, Kay, 2013. "Investigating the nonlinear relationship between transportation system performance and daily activity–travel scheduling behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 342-357.
    20. Khandker Habib & Eric Miller, 2008. "Modelling daily activity program generation considering within-day and day-to-day dynamics in activity-travel behaviour," Transportation, Springer, vol. 35(4), pages 467-484, July.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:30:y:1996:i:6:p:415-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.