IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v28y2018icp56-70.html
   My bibliography  Save this article

Understanding activity engagement across weekdays and weekend days: A multivariate multiple discrete-continuous modeling approach

Author

Listed:
  • Astroza, Sebastian
  • Bhat, Prerna C.
  • Bhat, Chandra R.
  • Pendyala, Ram M.
  • Garikapati, Venu M.

Abstract

This paper is motivated by the increasing recognition that modeling activity-travel demand for a single day of the week, as is done in virtually all travel forecasting models, may be inadequate in capturing underlying processes that govern activity-travel scheduling behavior. The considerable variability in daily travel suggests that there are important complementary relationships and competing tradeoffs involved in scheduling and allocating time to various activities across days of the week. Both limited survey data availability and methodological challenges in modeling week-long activity-travel schedules have precluded the development of multi-day activity-travel demand models. With passive and technology-based data collection methods increasingly in vogue, the collection of multi-day travel data may become increasingly commonplace in the years ahead. This paper addresses the methodological challenge associated with modeling multi-day activity-travel demand by formulating a multivariate multiple discrete-continuous probit (MDCP) model system. The comprehensive framework ties together two MDCP model components, one corresponding to weekday time allocation and the other to weekend activity-time allocation. By tying the two MDCP components together, the model system also captures relationships in activity-time allocation between weekdays on the one hand and weekend days on the other. Model estimation on a week-long travel diary data set from the United Kingdom shows that there are significant inter-relationships between weekdays and weekend days in activity-travel scheduling behavior. The model system presented in this paper may serve as a higher-level multi-day activity scheduler in conjunction with existing daily activity-based travel models.

Suggested Citation

  • Astroza, Sebastian & Bhat, Prerna C. & Bhat, Chandra R. & Pendyala, Ram M. & Garikapati, Venu M., 2018. "Understanding activity engagement across weekdays and weekend days: A multivariate multiple discrete-continuous modeling approach," Journal of choice modelling, Elsevier, vol. 28(C), pages 56-70.
  • Handle: RePEc:eee:eejocm:v:28:y:2018:i:c:p:56-70
    DOI: 10.1016/j.jocm.2018.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534517301525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2018.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pinjari, Abdul Rawoof & Augustin, Bertho & Sivaraman, Vijayaraghavan & Faghih Imani, Ahmadreza & Eluru, Naveen & Pendyala, Ram M., 2016. "Stochastic frontier estimation of budgets for Kuhn–Tucker demand systems: Application to activity time-use analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 117-133.
    2. Kay Axhausen & Andrea Zimmermann & Stefan Schönfelder & Guido Rindsfüser & Thomas Haupt, 2002. "Observing the rhythms of daily life: A six-week travel diary," Transportation, Springer, vol. 29(2), pages 95-124, May.
    3. Lee, Ming S. & McNally, Michael G., 2003. "On the structure of weekly activity/travel patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 823-839, December.
    4. Lee, Ming S. & McNally, Michael G., 2003. "On the Structure of Weekly Activity/Travel Patterns," University of California Transportation Center, Working Papers qt15w464vp, University of California Transportation Center.
    5. Chinh Ho & Corinne Mulley, 2013. "Tour-based mode choice of joint household travel patterns on weekend and weekday," Transportation, Springer, vol. 40(4), pages 789-811, July.
    6. Harley Frazis & Jay Stewart, 2012. "How to Think about Time-Use Data: What Inferences Can We Make about Long- and Short-Run Time Use from Time Diaries?," Annals of Economics and Statistics, GENES, issue 105-106, pages 231-245.
    7. Bhat, Chandra R., 2015. "A new generalized heterogeneous data model (GHDM) to jointly model mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 50-77.
    8. Zhou, Jianyu Jack & Golledge, R G, 2003. "An Analysis of Variability of Travel Behavior within One-Week Period based on GPS," University of California Transportation Center, Working Papers qt541616c9, University of California Transportation Center.
    9. Bhat, Chandra R. & Gossen, Rachel, 2004. "A mixed multinomial logit model analysis of weekend recreational episode type choice," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 767-787, November.
    10. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    11. Bhat, Chandra R. & Astroza, Sebastian & Bhat, Aarti C. & Nagel, Kai, 2016. "Incorporating a multiple discrete-continuous outcome in the generalized heterogeneous data model: Application to residential self-selection effects analysis in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 52-76.
    12. repec:adr:anecst:y:2012:i:105-106:p:11 is not listed on IDEAS
    13. Jara-Díaz, Sergio R. & Astroza, Sebastian & Bhat, Chandra R. & Castro, Marisol, 2016. "Introducing relations between activities and goods consumption in microeconomic time use models," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 162-180.
    14. Arentze, Theo A. & Timmermans, Harry J.P., 2009. "A need-based model of multi-day, multi-person activity generation," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 251-265, February.
    15. Toshiyuki Yamamoto & Ryuichi Kitamura, 1999. "An analysis of time allocation to in-home and out-of-home discretionary activities across working days and non- working days," Transportation, Springer, vol. 26(2), pages 231-250, May.
    16. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    17. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2015. "Understanding time use: Daily or weekly data?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 38-57.
    18. Bhat, Chandra R. & Koppelman, Frank S., 1993. "A conceptual framework of individual activity program generation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(6), pages 433-446, November.
    19. Castro, Marisol & Bhat, Chandra R. & Pendyala, Ram M. & Jara-Díaz, Sergio R., 2012. "Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 729-743.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leung, Kevin Y.K. & Astroza, Sebastian & Loo, Becky P.Y. & Bhat, Chandra R., 2019. "An environment-people interactions framework for analysing children's extra-curricular activities and active transport," Journal of Transport Geography, Elsevier, vol. 74(C), pages 341-358.
    2. Pellegrini, Andrea & Pinjari, Abdul Rawoof & Maggi, Rico, 2021. "A multiple discrete continuous model of time use that accommodates non-additively separable utility functions along with time and monetary budget constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 37-53.
    3. Dubey, Subodh & Cats, Oded & Hoogendoorn, Serge & Bansal, Prateek, 2022. "A multinomial probit model with Choquet integral and attribute cut-offs," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 140-163.
    4. Sarangi, Punyabeet & Manoj, M., 2022. "Task-allocation among adult household members by activity purpose and accompanying person," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 246-266.
    5. Deschaintres, Elodie & Morency, Catherine & Trépanier, Martin, 2022. "Cross-analysis of the variability of travel behaviors using one-day trip diaries and longitudinal data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 228-246.
    6. Saxena, Shobhit & Pinjari, Abdul Rawoof & Paleti, Rajesh, 2022. "A multiple discrete-continuous extreme value model with ordered preferences (MDCEV-OP): Modelling framework for episode-level activity participation and time-use analysis," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 259-283.
    7. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pellegrini, Andrea & Pinjari, Abdul Rawoof & Maggi, Rico, 2021. "A multiple discrete continuous model of time use that accommodates non-additively separable utility functions along with time and monetary budget constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 37-53.
    2. Reinhard Hössinger & Florian Aschauer & Sergio Jara-Díaz & Simona Jokubauskaite & Basil Schmid & Stefanie Peer & Kay W. Axhausen & Regine Gerike, 2020. "A joint time-assignment and expenditure-allocation model: value of leisure and value of time assigned to travel for specific population segments," Transportation, Springer, vol. 47(3), pages 1439-1475, June.
    3. Jokubauskaitė, Simona & Hössinger, Reinhard & Aschauer, Florian & Gerike, Regine & Jara-Díaz, Sergio & Peer, Stefanie & Schmid, Basil & Axhausen, Kay W. & Leisch, Friedrich, 2019. "Advanced continuous-discrete model for joint time-use expenditure and mode choice estimation," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 397-421.
    4. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2017. "Beyond transport time: A review of time use modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 209-230.
    5. Saxena, Shobhit & Pinjari, Abdul Rawoof & Paleti, Rajesh, 2022. "A multiple discrete-continuous extreme value model with ordered preferences (MDCEV-OP): Modelling framework for episode-level activity participation and time-use analysis," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 259-283.
    6. Bhat, Chandra R. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Aarti C., 2020. "A multiple discrete extreme value choice model with grouped consumption data and unobserved budgets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 196-222.
    7. Astroza, Sebastian & Guarda, Pablo & Carrasco, Juan Antonio, 2022. "Modeling the relationship between food purchasing, transport, and health outcomes: Evidence from Concepcion, Chile," Journal of choice modelling, Elsevier, vol. 42(C).
    8. Leung, Kevin Y.K. & Astroza, Sebastian & Loo, Becky P.Y. & Bhat, Chandra R., 2019. "An environment-people interactions framework for analysing children's extra-curricular activities and active transport," Journal of Transport Geography, Elsevier, vol. 74(C), pages 341-358.
    9. Allahviranloo, Mahdieh & Aissaoui, Leila, 2019. "A comparison of time-use behavior in metropolitan areas using pattern recognition techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 271-287.
    10. Bhat, Chandra R. & Astroza, Sebastian & Bhat, Aarti C. & Nagel, Kai, 2016. "Incorporating a multiple discrete-continuous outcome in the generalized heterogeneous data model: Application to residential self-selection effects analysis in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 52-76.
    11. Lai, Xinjun & Lam, William H.K. & Su, Junbiao & Fu, Hui, 2019. "Modelling intra-household interactions in time-use and activity patterns of retired and dual-earner couples," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 172-194.
    12. Enam, Annesha & Konduri, Karthik C. & Pinjari, Abdul R. & Eluru, Naveen, 2018. "An integrated choice and latent variable model for multiple discrete continuous choice kernels: Application exploring the association between day level moods and discretionary activity engagement choi," Journal of choice modelling, Elsevier, vol. 26(C), pages 80-100.
    13. La Paix Puello, Lissy & Chowdhury, Saidul & Geurs, Karst, 2019. "Using panel data for modelling duration dynamics of outdoor leisure activities," Journal of choice modelling, Elsevier, vol. 31(C), pages 141-155.
    14. Bhat, Chandra R. & Pinjari, Abdul R. & Dubey, Subodh K. & Hamdi, Amin S., 2016. "On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 240-263.
    15. Shasha Liu & Toshiyuki Yamamoto & Enjian Yao, 2023. "Joint modeling of mode choice and travel distance with intra-household interactions," Transportation, Springer, vol. 50(5), pages 1527-1552, October.
    16. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    17. Vinayak, Pragun & Dias, Felipe F. & Astroza, Sebastian & Bhat, Chandra R. & Pendyala, Ram M. & Garikapati, Venu M., 2018. "Accounting for multi-dimensional dependencies among decision-makers within a generalized model framework: An application to understanding shared mobility service usage levels," Transport Policy, Elsevier, vol. 72(C), pages 129-137.
    18. Echeverría, Lucía & Gimenez-Nadal, J. Ignacio & Molina, José Alberto, 2021. "Carpooling: User profiles and well-being," Nülan. Deposited Documents 3568, Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación.
    19. Chandra R. Bhat & Subodh K. Dubey & Mohammad Jobair Bin Alam & Waleed H. Khushefati, 2015. "A New Spatial Multiple Discrete-Continuous Modeling Approach To Land Use Change Analysis," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 801-841, November.
    20. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:28:y:2018:i:c:p:56-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.