IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v98y2025ics1059056025001595.html
   My bibliography  Save this article

High-dimensional multi-period portfolio allocation using deep reinforcement learning

Author

Listed:
  • Jiang, Yifu
  • Olmo, Jose
  • Atwi, Majed

Abstract

This paper proposes a novel investment strategy based on deep reinforcement learning (DRL) for long-term portfolio allocation in the presence of transaction costs and risk aversion. We design an advanced portfolio policy framework to model the price dynamic patterns using convolutional neural networks (CNN), capture group-wise asset dependence using WaveNet, and solve the optimal asset allocation problem using DRL. These methods are embedded within a multi-period Bellman equation framework. An additional appealing feature of our investment strategy is its ability to optimize dynamically over a large set of potentially correlated risky assets. The performance of this portfolio is tested empirically over different holding periods, risk aversion levels, transaction cost rates, and financial indices. The results demonstrate the effectiveness and superiority of the proposed long-term portfolio allocation strategy compared to several competitors based on machine learning methods and traditional optimization techniques.

Suggested Citation

  • Jiang, Yifu & Olmo, Jose & Atwi, Majed, 2025. "High-dimensional multi-period portfolio allocation using deep reinforcement learning," International Review of Economics & Finance, Elsevier, vol. 98(C).
  • Handle: RePEc:eee:reveco:v:98:y:2025:i:c:s1059056025001595
    DOI: 10.1016/j.iref.2025.103996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056025001595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2025.103996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    2. Kamali, Rezvan & Mahmoodi, Safieh & Jahandideh, Mohammad-Taghi, 2019. "Optimization of multi-period portfolio model after fitting best distribution," Finance Research Letters, Elsevier, vol. 30(C), pages 44-50.
    3. Lucey, Brian M. & Muckley, Cal, 2011. "Robust global stock market interdependencies," International Review of Financial Analysis, Elsevier, vol. 20(4), pages 215-224, August.
    4. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    5. Brennan, Michael J. & Schwartz, Eduardo S. & Lagnado, Ronald, 1997. "Strategic asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1377-1403, June.
    6. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    7. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2016. "Portfolio choice with stochastic interest rates and learning about stock return predictability," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 347-370.
    8. Cui, Tianxiang & Du, Nanjiang & Yang, Xiaoying & Ding, Shusheng, 2024. "Multi-period portfolio optimization using a deep reinforcement learning hyper-heuristic approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    9. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    10. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    11. Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
    12. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    13. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    14. Epstein, Larry G & Zin, Stanley E, 1991. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: An Empirical Analysis," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 263-286, April.
    15. LuisM. Viceira & John Y. Campbell, 2001. "Who Should Buy Long-Term Bonds?," American Economic Review, American Economic Association, vol. 91(1), pages 99-127, March.
    16. Eom, Cheoljun & Park, Jong Won, 2017. "Effects of common factors on stock correlation networks and portfolio diversification," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 1-11.
    17. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942, Decembrie.
    18. Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
    19. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    20. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    21. Laborda, Ricardo & Olmo, Jose, 2017. "Optimal asset allocation for strategic investors," International Journal of Forecasting, Elsevier, vol. 33(4), pages 970-987.
    22. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    23. Hong Liu & Mark Loewenstein, 2002. "Optimal Portfolio Selection with Transaction Costs and Finite Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 15(3), pages 805-835.
    24. Thibault Jaisson, 2022. "Deep differentiable reinforcement learning and optimal trading," Quantitative Finance, Taylor & Francis Journals, vol. 22(8), pages 1429-1443, August.
    25. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    26. Haoran Wang & Xun Yu Zhou, 2020. "Continuous‐time mean–variance portfolio selection: A reinforcement learning framework," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1273-1308, October.
    27. George M. Constantinides, 2005. "Capital Market Equilibrium with Transaction Costs," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 7, pages 207-227, World Scientific Publishing Co. Pte. Ltd..
    28. Olschewski, Sebastian & Diao, Linan & Rieskamp, Jörg, 2021. "Reinforcement learning about asset variability and correlation in repeated portfolio decisions," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    29. Michael W. Brandt & Pedro Santa‐Clara, 2006. "Dynamic Portfolio Selection by Augmenting the Asset Space," Journal of Finance, American Finance Association, vol. 61(5), pages 2187-2217, October.
    30. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 433-495.
    31. Chen, Shun & Ge, Lei, 2021. "A learning-based strategy for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 936-942.
    32. Schroder, Mark & Skiadas, Costis, 1999. "Optimal Consumption and Portfolio Selection with Stochastic Differential Utility," Journal of Economic Theory, Elsevier, vol. 89(1), pages 68-126, November.
    33. Thibault Jaisson, 2021. "Deep differentiable reinforcement learning and optimal trading," Papers 2112.02944, arXiv.org, revised Apr 2022.
    34. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    35. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    36. Stefania Corsaro & Valentina De Simone & Zelda Marino & Salvatore Scognamiglio, 2022. "l 1 -Regularization in Portfolio Selection with Machine Learning," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laborda, Ricardo & Olmo, Jose, 2017. "Optimal asset allocation for strategic investors," International Journal of Forecasting, Elsevier, vol. 33(4), pages 970-987.
    2. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    3. Rapach, David E. & Wohar, Mark E., 2009. "Multi-period portfolio choice and the intertemporal hedging demands for stocks and bonds: International evidence," Journal of International Money and Finance, Elsevier, vol. 28(3), pages 427-453, April.
    4. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    5. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    6. John Y. Campbell & Luis M. Viceira & Joshua S. White, 2003. "Foreign Currency for Long-Term Investors," Economic Journal, Royal Economic Society, vol. 113(486), pages 1-25, March.
    7. Maenhout, Pascal J., 2006. "Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium," Journal of Economic Theory, Elsevier, vol. 128(1), pages 136-163, May.
    8. Spierdijk, Laura & Umar, Zaghum, 2014. "Stocks for the long run? Evidence from emerging markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 217-238.
    9. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    10. Jakub W. Jurek & Luis M. Viceira, 2011. "Optimal Value and Growth Tilts in Long-Horizon Portfolios," Review of Finance, European Finance Association, vol. 15(1), pages 29-74.
    11. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    12. Mark E. Wohar & David E. Rapach, 2005. "Return Predictability and the Implied Intertemporal Hedging Demands for Stocks and Bonds: International Evidence," Computing in Economics and Finance 2005 329, Society for Computational Economics.
    13. Gonzalo, Jesús & Olmo, José, 2016. "Long-term optimal portfolio allocation under dynamic horizon-specific risk aversion," UC3M Working papers. Economics 23599, Universidad Carlos III de Madrid. Departamento de Economía.
    14. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    15. Rytchkov, Oleg, 2016. "Time-Varying Margin Requirements and Optimal Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(2), pages 655-683, April.
    16. Thomas Q. Pedersen, 2008. "Intertemporal Asset Allocation with Habit Formation in Preferences: An Approximate Analytical Solution," CREATES Research Papers 2008-60, Department of Economics and Business Economics, Aarhus University.
    17. Hui Chen & Nengjiu Ju & Jianjun Miao, 2014. "Dynamic Asset Allocation with Ambiguous Return Predictability," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(4), pages 799-823, October.
    18. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    19. Luca Benzoni & Pierre Collin‐Dufresne & Robert S. Goldstein, 2007. "Portfolio Choice over the Life‐Cycle when the Stock and Labor Markets Are Cointegrated," Journal of Finance, American Finance Association, vol. 62(5), pages 2123-2167, October.
    20. Daniel Giamouridis & Athanasios Sakkas & Nikolaos Tessaromatis, 2017. "Dynamic Asset Allocation with Liabilities," European Financial Management, European Financial Management Association, vol. 23(2), pages 254-291, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:98:y:2025:i:c:s1059056025001595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.