IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v7y1998i3p315-330.html
   My bibliography  Save this article

A Trinomial Option Pricing Model Dependent on Skewness and Kurtosis

Author

Listed:
  • Tian, Yisong Sam

Abstract

No abstract is available for this item.

Suggested Citation

  • Tian, Yisong Sam, 1998. "A Trinomial Option Pricing Model Dependent on Skewness and Kurtosis," International Review of Economics & Finance, Elsevier, vol. 7(3), pages 315-330.
  • Handle: RePEc:eee:reveco:v:7:y:1998:i:3:p:315-330
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059-0560(99)80034-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    2. Whaley, Robert E., 1982. "Valuation of American call options on dividend-paying stocks : Empirical tests," Journal of Financial Economics, Elsevier, vol. 10(1), pages 29-58, March.
    3. Sterk, William E., 1983. "Comparative Performance of the Black-Scholes and Roll-Geske-Whaley Option Pricing Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(3), pages 345-354, September.
    4. Benoit Mandelbrot & Howard M. Taylor, 1967. "On the Distribution of Stock Price Differences," Operations Research, INFORMS, vol. 15(6), pages 1057-1062, December.
    5. Galai, Dan, 1977. "Tests of Market Efficiency of the Chicago Board Options Exchange," The Journal of Business, University of Chicago Press, vol. 50(2), pages 167-197, April.
    6. Bhattacharya, Mihir, 1980. "Empirical Properties of the Black-Scholes Formula Under Ideal Conditions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(5), pages 1081-1105, December.
    7. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    8. Singleton, J. Clay & Wingender, John, 1986. "Skewness Persistence in Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 335-341, September.
    9. Tucker, Alan L, 1992. "A Reexamination of Finite- and Infinite-Variance Distributions as Models of Daily Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 73-81, January.
    10. MacBeth, James D & Merville, Larry J, 1980. "Tests of the Black-Scholes and Cox Call Option Valuation Models," Journal of Finance, American Finance Association, vol. 35(2), pages 285-301, May.
    11. McCulloch, J Huston, 1978. "Continuous Time Processes with Stable Increments," The Journal of Business, University of Chicago Press, vol. 51(4), pages 601-619, October.
    12. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    13. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    14. Lau, Amy Hing-Ling & Lau, Hon-Shiang & Wingender, John R, 1990. "The Distribution of Stock Returns: New Evidence against the Stable Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 217-223, April.
    15. Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(4), pages 533-554, November.
    16. Sterk, William, 1982. "Tests of Two Models for Valuing Call Options on Stocks with Dividends," Journal of Finance, American Finance Association, vol. 37(5), pages 1229-1237, December.
    17. Rubinstein, Mark, 1985. "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-480, June.
    18. Badrinath, S G & Chatterjee, Sangit, 1991. "A Data-Analytic Look at Skewness and Elongation in Common-Stock-Return Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(2), pages 223-233, April.
    19. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    20. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    21. Latane, Henry A & Rendleman, Richard J, Jr, 1976. "Standard Deviations of Stock Price Ratios Implied in Option Prices," Journal of Finance, American Finance Association, vol. 31(2), pages 369-381, May.
    22. Badrinath, S G & Chatterjee, Sangit, 1988. "On Measuring Skewness and Elongation in Common Stock Return Distributions: The Case of the Market Index," The Journal of Business, University of Chicago Press, vol. 61(4), pages 451-472, October.
    23. Aggarwal, Raj & Rao, Ramesh P, 1990. "Institutional Ownership and Distribution of Equity Returns," The Financial Review, Eastern Finance Association, vol. 25(2), pages 211-229, May.
    24. Schmalensee, Richard & Trippi, Robert R, 1978. "Common Stock Volatility Expectations Implied by Option Premia," Journal of Finance, American Finance Association, vol. 33(1), pages 129-147, March.
    25. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    26. Geske, Robert & Roll, Richard, 1984. "On Valuing American Call Options with the Black-Scholes European Formula," Journal of Finance, American Finance Association, vol. 39(2), pages 443-455, June.
    27. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    28. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    3. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    4. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2011, January-A.
    5. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    6. Robert J. Ritchey, 1990. "Call Option Valuation For Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, December.
    7. Chang, Carolyn W. & S.K. Chang, Jack & Lim, Kian-Guan, 1998. "Information-time option pricing: theory and empirical evidence," Journal of Financial Economics, Elsevier, vol. 48(2), pages 211-242, May.
    8. Ncube, Mthuli, 1996. "Modelling implied volatility with OLS and panel data models," Journal of Banking & Finance, Elsevier, vol. 20(1), pages 71-84, January.
    9. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    10. David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48, January.
    11. Duan, Jin-Chuan & Zhang, Hua, 2001. "Pricing Hang Seng Index options around the Asian financial crisis - A GARCH approach," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1989-2014, November.
    12. Steven Kou, 2000. "A Jump Diffusion Model for Option Pricing with Three Properties: Leptokurtic Feature, Volatility Smile, and Analytical Tractability," Econometric Society World Congress 2000 Contributed Papers 0062, Econometric Society.
    13. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    14. Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
    15. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    16. Veld, C.H. & Verboven, A.H.F., 1993. "An empirical analysis of warrant prices versus long term call option prices," Research Memorandum FEW 594, Tilburg University, School of Economics and Management.
    17. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, September.
    18. Don M. Chance & Thomas A. Hanson & Weiping Li & Jayaram Muthuswamy, 2017. "A bias in the volatility smile," Review of Derivatives Research, Springer, vol. 20(1), pages 47-90, April.
    19. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    20. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:7:y:1998:i:3:p:315-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.