IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v57y2016icp21-31.html
   My bibliography  Save this article

Developing (tele)work? A multi-level sociotechnical perspective of telework in Ireland

Author

Listed:
  • Hynes, Mike

Abstract

The ubiquitous nature and use of technology in contemporary societies continues to transform lives and work environments. At the same time, transport continues to be a major source of harmful emissions. Telework has been suggested as a means to reduce unnecessary work-related travel, including the daily commute. Telework occurs when Information Communication Technologies (ICTs) are applied to enable work be accomplished at a distance from the location where results are needed. However, despite its promising nature and early optimist predictions, telework has largely failed to capture management and workers' attention and imagination. Using a multi-level perspective (MLP) on sociotechnical transitions approach, this study reveals why telework continues to remain a ‘niche’ practice dominated by a small set of industries, managers and workers. The paper builds on MLP thinking with a view to highlighting behavioural, cultural, and political aspects of socio-technical transitions and their interactions, which are frequently limited in classical MLP thinking. The failure to enrol additional niche-actors, the dominance of traditional forms of working and automobility, and the absence of policy and lack of legitimacy, all act negatively to keep telework from emerging from the niche to the regime level and becoming established as a more mainstream practice.

Suggested Citation

  • Hynes, Mike, 2016. "Developing (tele)work? A multi-level sociotechnical perspective of telework in Ireland," Research in Transportation Economics, Elsevier, vol. 57(C), pages 21-31.
  • Handle: RePEc:eee:retrec:v:57:y:2016:i:c:p:21-31
    DOI: 10.1016/j.retrec.2016.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885915301311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2016.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokhtarian, Patricia L., 1990. "A Typology of Relationships Between Telecommunications And Transportation," University of California Transportation Center, Working Papers qt4rx589m0, University of California Transportation Center.
    2. Michael Nye & Lorraine Whitmarsh & Timothy Foxon, 2010. "Sociopsychological Perspectives on the Active Roles of Domestic Actors in Transition to a Lower Carbon Electricity Economy," Environment and Planning A, , vol. 42(3), pages 697-714, March.
    3. Nicola Commins & Anne Nolan, 2010. "Car Ownership and Mode of Transport to Work in Ireland," The Economic and Social Review, Economic and Social Studies, vol. 41(1), pages 43-75.
    4. Michael Hynes, 2014. "Telework Isn’t Working: A Policy Review," The Economic and Social Review, Economic and Social Studies, vol. 45(4), pages 579-602.
    5. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    6. Mokhtarian, Patricia L., 1991. "Telecommuting and Travel: State of the Practice, State of the Art," University of California Transportation Center, Working Papers qt4zc486ph, University of California Transportation Center.
    7. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    8. P L Mokhtarian & I Salomon, 1996. "Modeling the Choice of Telecommuting: 2. A Case of the Preferred Impossible Alternative," Environment and Planning A, , vol. 28(10), pages 1859-1876, October.
    9. Shove, Elizabeth & Walker, Gordon, 2010. "Governing transitions in the sustainability of everyday life," Research Policy, Elsevier, vol. 39(4), pages 471-476, May.
    10. P L Mokhtarian & I Salomon, 1996. "Modeling the Choice of Telecommuting: 3. Identifying the Choice Set and Estimating Binary Choice Models for Technology-Based Alternatives," Environment and Planning A, , vol. 28(10), pages 1877-1894, October.
    11. Verbong, Geert & Geels, Frank, 2007. "The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960-2004)," Energy Policy, Elsevier, vol. 35(2), pages 1025-1037, February.
    12. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    13. Frank W. Geels, 2005. "Technological Transitions and System Innovations," Books, Edward Elgar Publishing, number 3576.
    14. Watson, Dorothy & Russell, Helen & O'Connell, Philip J., 2011. "The Changing Workplace," Papers RB2011/1/3, Economic and Social Research Institute (ESRI).
    15. Smith, Adrian & Stirling, Andy & Berkhout, Frans, 2005. "The governance of sustainable socio-technical transitions," Research Policy, Elsevier, vol. 34(10), pages 1491-1510, December.
    16. Genus, Audley & Coles, Anne-Marie, 2008. "Rethinking the multi-level perspective of technological transitions," Research Policy, Elsevier, vol. 37(9), pages 1436-1445, October.
    17. ., 1998. "Technological Change," Chapters, in: Heinz D. Kurz & Neri Salvadori (ed.), The Elgar Companion to Classical Economics, volume 0, chapter 127, Edward Elgar Publishing.
    18. Santos, Georgina & Behrendt, Hannah & Teytelboym, Alexander, 2010. "Part II: Policy instruments for sustainable road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 46-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Waynika Tanpipat & Huey Wen Lim & Xiaomei Deng, 2021. "Implementing Remote Working Policy in Corporate Offices in Thailand: Strategic Facility Management Perspective," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    2. Matthias Sweet & Darren M Scott, 2024. "What might working from home mean for the geography of work and commuting in the Greater Golden Horseshoe, Canada?," Urban Studies, Urban Studies Journal Limited, vol. 61(3), pages 567-588, February.
    3. Teresa Cuerdo-Vilches & Miguel Ángel Navas-Martín & Ignacio Oteiza, 2021. "Working from Home: Is Our Housing Ready?," IJERPH, MDPI, vol. 18(14), pages 1-28, July.
    4. Andrew Hook & Victor Court & Benjamin K Sovacool & Steven Sorrell, 2020. "A Systematic Review of the Energy and Climate Impacts of Teleworking," Working Papers hal-03192905, HAL.
    5. Lin, Xiao & Wells, Peter & Sovacool, Benjamin K., 2018. "The death of a transport regime? The future of electric bicycles and transportation pathways for sustainable mobility in China," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 255-267.
    6. Geels, Frank W., 2020. "Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    7. Alina-Mihaela Dima & Claudia-Elena Țuclea & Diana-Maria Vrânceanu & Gabriela Țigu, 2019. "Sustainable Social and Individual Implications of Telework: A New Insight into the Romanian Labor Market," Sustainability, MDPI, vol. 11(13), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svensson, Oscar & Nikoleris, Alexandra, 2018. "Structure reconsidered: Towards new foundations of explanatory transitions theory," Research Policy, Elsevier, vol. 47(2), pages 462-473.
    2. Sorrell, Steve, 2018. "Explaining sociotechnical transitions: A critical realist perspective," Research Policy, Elsevier, vol. 47(7), pages 1267-1282.
    3. Pesch, Udo, 2015. "Tracing discursive space: Agency and change in sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 379-388.
    4. Fuenfschilling, Lea & Truffer, Bernhard, 2014. "The structuration of socio-technical regimes—Conceptual foundations from institutional theory," Research Policy, Elsevier, vol. 43(4), pages 772-791.
    5. Canitez, Fatih, 2019. "Pathways to sustainable urban mobility in developing megacities: A socio-technical transition perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 319-329.
    6. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2016. "Socio-technical analysis of the electricity sector of Mexico: Its historical evolution and implications for a transition towards low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 567-590.
    7. Whitmarsh, Lorraine, 2012. "How useful is the Multi-Level Perspective for transport and sustainability research?," Journal of Transport Geography, Elsevier, vol. 24(C), pages 483-487.
    8. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    9. Zhu, Bing & Nguyen, Mai & Sarm Siri, Nang & Malik, Ashish, 2022. "Towards a transformative model of circular economy for SMEs," Journal of Business Research, Elsevier, vol. 144(C), pages 545-555.
    10. Yuan, Jiahai & Xu, Yan & Hu, Zhaoguang, 2012. "Delivering power system transition in China," Energy Policy, Elsevier, vol. 50(C), pages 751-772.
    11. Yuan, Jiahai & Xu, Yan & Hu, Zhen & Yu, Zhongfu & Liu, Jiangyan & Hu, Zhaoguang & Xu, Ming, 2012. "Managing electric power system transition in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5660-5677.
    12. Manning, Stephan & Reinecke, Juliane, 2016. "A modular governance architecture in-the-making: How transnational standard-setters govern sustainability transitions," Research Policy, Elsevier, vol. 45(3), pages 618-633.
    13. Hultman, Nathan E. & Malone, Elizabeth L. & Runci, Paul & Carlock, Gregory & Anderson, Kate L., 2012. "Factors in low-carbon energy transformations: Comparing nuclear and bioenergy in Brazil, Sweden, and the United States," Energy Policy, Elsevier, vol. 40(C), pages 131-146.
    14. Ford, Rebecca & Walton, Sara & Stephenson, Janet & Rees, David & Scott, Michelle & King, Geoff & Williams, John & Wooliscroft, Ben, 2017. "Emerging energy transitions: PV uptake beyond subsidies," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 138-150.
    15. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    16. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    17. Roesler, Tim & Hassler, Markus, 2019. "Creating niches – The role of policy for the implementation of bioenergy village cooperatives in Germany," Energy Policy, Elsevier, vol. 124(C), pages 95-101.
    18. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    19. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    20. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:57:y:2016:i:c:p:21-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.