IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v55y2016icp361-370.html
   My bibliography  Save this article

Structural properties and inter-organizational knowledge flows of patent citation network: The case of organic solar cells

Author

Listed:
  • Choe, Hochull
  • Lee, Duk Hee
  • Kim, Hee Dae
  • Seo, Il Won

Abstract

This paper identifies the structural properties of a technological knowledge network and the role of major organizations in the network, and analyzes actual contents of technological knowledge flows in terms of organization-technology linkage, by targeting the field of organic solar cells (OSC). Network analysis and matrix analysis methods are used to achieve these purposes. The results show the small-world effect exists in the technological knowledge network of OSCs, and the organizations with high betweenness centrality lead the technological knowledge flows. We also find technological knowledge in classes 136 and 313 flows relatively actively in key organizations׳ network of OSCs. This means that technological knowledge regarding photoelectric batteries and electric lamp and discharge devices is mainly circulated between key organizations and indicates that the electronics or display sector will become a major consumer for early commercialization of OSCs. The target of analysis in this study is a patent citation network in the field of OSCs. Since we did not analyze all scientific publications, we cannot conclude that the results represent the entire flow of technological knowledge in that field. However, given that little attention has been paid to empirical studies of technological knowledge flows at the organizational level, this study makes an academic contribution by directly analyzing technological knowledge flows between organizations and presenting new taxonomic method based on centralities. The analytical process and methodology of this study, which include analysis of the structural properties of technological knowledge networks, matrix analysis and taxonomical grouping, and analysis of technological knowledge flows between key organizations, will be usefully applied to the analysis of technological knowledge networks in other fields.

Suggested Citation

  • Choe, Hochull & Lee, Duk Hee & Kim, Hee Dae & Seo, Il Won, 2016. "Structural properties and inter-organizational knowledge flows of patent citation network: The case of organic solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 361-370.
  • Handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:361-370
    DOI: 10.1016/j.rser.2015.10.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115012290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaomei Chen & Diana Hicks, 2004. "Tracing knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(2), pages 199-211, February.
    2. Rebecca Henderson & Adam B. Jaffe & Manuel Trajtenberg, 1998. "Universities As A Source Of Commercial Technology: A Detailed Analysis Of University Patenting, 1965-1988," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 119-127, February.
    3. repec:fth:harver:1473 is not listed on IDEAS
    4. Hu, Albert G. Z. & Jaffe, Adam B., 2003. "Patent citations and international knowledge flow: the cases of Korea and Taiwan," International Journal of Industrial Organization, Elsevier, vol. 21(6), pages 849-880, June.
    5. Jonathan Michie, 1998. "Introduction. The Internationalisation of the Innovation Process," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 5(3), pages 261-277.
    6. Anil K. Gupta & Vijay Govindarajan, 2000. "Knowledge flows within multinational corporations," Strategic Management Journal, Wiley Blackwell, vol. 21(4), pages 473-496, April.
    7. de la Tour, Arnaud & Glachant, Matthieu & Ménière, Yann, 2011. "Innovation and international technology transfer: The case of the Chinese photovoltaic industry," Energy Policy, Elsevier, vol. 39(2), pages 761-770, February.
    8. Park, Jongyong & Lee, Hakyeon & Park, Yongtae, 2009. "Disembodied knowledge flows among industrial clusters: A patent analysis of the Korean manufacturing sector," Technology in Society, Elsevier, vol. 31(1), pages 73-84.
    9. Adam Jaffe & Manuel Trajtenberg, 1999. "International Knowledge Flows: Evidence From Patent Citations," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 8(1-2), pages 105-136.
    10. Stolpe, Michael, 2002. "Determinants of knowledge diffusion as evidenced in patent data: the case of liquid crystal display technology," Research Policy, Elsevier, vol. 31(7), pages 1181-1198, September.
    11. von Wartburg, Iwan & Teichert, Thorsten & Rost, Katja, 2005. "Inventive progress measured by multi-stage patent citation analysis," Research Policy, Elsevier, vol. 34(10), pages 1591-1607, December.
    12. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    13. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    14. Bessen, James, 2008. "The value of U.S. patents by owner and patent characteristics," Research Policy, Elsevier, vol. 37(5), pages 932-945, June.
    15. Han, Yoo-Jin & Park, Yongtae, 2006. "Patent network analysis of inter-industrial knowledge flows: The case of Korea between traditional and emerging industries," World Patent Information, Elsevier, vol. 28(3), pages 235-247, September.
    16. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    17. Reitzig, Markus, 2004. "Improving patent valuations for management purposes--validating new indicators by analyzing application rationales," Research Policy, Elsevier, vol. 33(6-7), pages 939-957, September.
    18. Choe, Hochull & Lee, Duk Hee & Seo, Il Won & Kim, Hee Dae, 2013. "Patent citation network analysis for the domain of organic photovoltaic cells: Country, institution, and technology field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 492-505.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Weiwei & Tao, Yuan & Bi, Kexin, 2022. "Capturing information on global knowledge flows from patent transfers: An empirical study using USPTO patents," Research Policy, Elsevier, vol. 51(5).
    2. Luis Míguez, José & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Rodríguez, Sandra, 2018. "Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity," Applied Energy, Elsevier, vol. 211(C), pages 1282-1296.
    3. Haoyang Song & Jianhua Hou & Yang Zhang, 2022. "Patent protection: does it promote or inhibit the patented technological knowledge diffusion?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2351-2379, May.
    4. Xia Cao & Chuanyun Li & Wei Chen & Jinqiu Li & Chaoran Lin, 2020. "Research on the invulnerability and optimization of the technical cooperation innovation network based on the patent perspective—A case study of new energy vehicles," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-19, September.
    5. Chi-Yo Huang & Liang-Chieh Wang & Ying-Ting Kuo & Wei-Ti Huang, 2021. "A Novel Analytic Framework of Technology Mining Using the Main Path Analysis and the Decision-Making Trial and Evaluation Laboratory-Based Analytic Network Process," Mathematics, MDPI, vol. 9(19), pages 1-24, October.
    6. Guan, JianCheng & Zhang, JingJing, 2018. "The dynamics of partner and knowledge portfolios in alternative energy field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2869-2879.
    7. Yu-Hsin Chang & Kuei-Kuei Lai & Chien-Yu Lin & Fang-Pei Su & Ming-Chung Yang, 2017. "A hybrid clustering approach to identify network positions and roles through social network and multivariate analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1733-1755, December.
    8. Míguez, José Luis & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Gómez, Miguel Ángel, 2020. "Biological systems for CCS: Patent review as a criterion for technological development," Applied Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choe, Hochull & Lee, Duk Hee & Seo, Il Won & Kim, Hee Dae, 2013. "Patent citation network analysis for the domain of organic photovoltaic cells: Country, institution, and technology field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 492-505.
    2. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    3. Ha, Sung Ho & Liu, Weina & Cho, Hune & Kim, Sang Hyun, 2015. "Technological advances in the fuel cell vehicle: Patent portfolio management," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 277-289.
    4. Boeing, Philipp & Mueller, Elisabeth, 2019. "Measuring China's patent quality: Development and validation of ISR indices," China Economic Review, Elsevier, vol. 57(C).
    5. Park, Jongyong & Lee, Hakyeon & Park, Yongtae, 2009. "Disembodied knowledge flows among industrial clusters: A patent analysis of the Korean manufacturing sector," Technology in Society, Elsevier, vol. 31(1), pages 73-84.
    6. Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
    7. Federico Munari & Maurizio Sobrero, 2011. "Economic and Management Perspectives on the Value of Patents," Chapters, in: Federico Munari & Raffaele Oriani (ed.), The Economic Valuation of Patents, chapter 3, Edward Elgar Publishing.
    8. Chandra, Praveena & Dong, Andy, 2018. "The relation between knowledge accumulation and technical value in interdisciplinary technologies," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 235-244.
    9. Heide Fier & Andreas Pyka, 2014. "Against the one-way-street: analyzing knowledge transfer from industry to science," The Journal of Technology Transfer, Springer, vol. 39(2), pages 219-246, April.
    10. Jyun-Cheng Wang & Cheng-hsin Chiang & Shu-Wei Lin, 2010. "Network structure of innovation: can brokerage or closure predict patent quality?," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 735-748, September.
    11. Show-Ling Jang & Shihmin Lo & Wen Hao Chang, 2009. "How do latecomers catch up with forerunners? Analysis of patents and patent citations in the field of flat panel display technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(3), pages 563-591, June.
    12. Carlo Giglio & Roberto Sbragia & Roberto Musmanno & Roberto Palmieri, 2021. "Cross-country learning from patents: an analysis of citations flows in innovation trajectories," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7917-7936, September.
    13. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    14. Nicolas van Zeebroeck, 2007. "Patents only live twice: a patent survival analysis in Europe," Working Papers CEB 07-028.RS, ULB -- Universite Libre de Bruxelles.
    15. Huang, Ying & Chen, Lixin & Zhang, Lin, 2020. "Patent citation inflation: The phenomenon, its measurement, and relative indicators to temper its effects," Journal of Informetrics, Elsevier, vol. 14(2).
    16. Zafer Sonmez, 2018. "Interregional inventor collaboration and the commercial value of patented inventions: evidence from the US biotechnology industry," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 61(2), pages 399-438, September.
    17. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    18. Lee, Changyong & Cho, Yangrae & Seol, Hyeonju & Park, Yongtae, 2012. "A stochastic patent citation analysis approach to assessing future technological impacts," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 16-29.
    19. Inchae Park & Yujin Jeong & Byungun Yoon, 2017. "Analyzing the value of technology based on the differences of patent citations between applicants and examiners," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 665-691, May.
    20. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:361-370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.